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Summary 

The availability of clean drinking water at any time is often taken for granted. 

However, the reliable supply of drinking water is, unfortunately, challenged by 

various threats, such as global warming and aging infrastructures, which put 

an immense pressure on the drinking water systems as we know them today. 

Consequently, utilities, technology providers and researchers seek to identify 

optimised and new approaches to maintaining and improving the quality of the 

delivered water. In an age of digitalisation, data-driven approaches are becom-

ing increasingly important, as they have demonstrated various benefits for the 

operation and design of water distribution networks. However, the increased 

collection and application of the data also pose a major challenge to the water 

sector. This PhD developed methods to help utilities in validating and applying 

their data in novel ways by analysing ‘real world’ data obtained from five Dan-

ish utilities, applied in six case studies. The PhD study was sectioned into: 1) 

data collection; 2) data validation and reconstruction; and 3) data application.  

Data-collection devices such as smart meters are increasingly deployed 

throughout water distribution systems. When utilities introduce smart meters, 

the selection of sampling resolutions has a trade-off between the applicability 

of the collected data and transmission costs. Analysis of a district metered area 

with smart meters installed revealed that common sampling resolutions of be-

tween 1 and 24 hours are sufficient for water loss assessments as long as utili-

ties have representative demand patterns of their network available. However, 

sampling resolutions < 1 hour are potentially important to obtain reliable water 

quality simulations.  

Automatic validation and reconstruction processing of the collected data are of 

paramount importance for utilities. The PhD project developed a systematic 

approach for categorizing anomalies. Four categories were introduced, with 

Type 0 describing system anomalies, Types 1 and 2 describing sensor data 

containing a low data quality, and Type 3 covering sensor data anomalies stor-

ing information about actual – though unusual – events appearing in the water 

distribution network. To identify anomalies of Types 1 and 2, seven validation 

tests were developed. Analysis of pressure and flow data sets from three Danish 

utilities revealed a large proportion of anomalies, with on average 10% missing 

data and up to 35% anomalies of Types 1 and 2 in a utility’s pressure data sets. 

These high numbers also emphasised the need for reconstruction processes to 

generate reliable data streams that are required in data applications. An exam-

ple was presented whereby artificial neural networks were used to provide 
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missing data and to further validate dubious observations. 

The collection of data from water distribution systems is not a new concept, 

but large amounts of data (such as temperature data) are often left unused due 

to a lack of evidence of successful applications. To show the benefits of tem-

perature data, a temperature model and a hydraulic model were combined to 

identify the status and location of valves in the network. This novel approach 

and field tests in the network unexpectedly revealed various anomalies of Type 

0 in the utility’s asset database, ultimately casting doubt on the validity of the 

hydraulic model. As long as such anomalies prevail in the data sets, it is not 

possible to apply advanced data-driven applications successfully. Another is-

sue in the case study included a low quantity of applicable temperature data. 

Smart meter temperature data, potentially available in each household, can be 

used to overcome this challenge. In another case study, the simulated temper-

ature throughout a district metered area showed a satisfying resemblance to 

smart meter temperature data (average root mean square error of 0.9 ºC). This 

highlights the potential of using smart meter temperature data for more ad-

vanced applications, such as leakage detection and valve status detection.  

Silo thinking is traditionally a common feature of the water sector, and the 

value of water supply data is thus often overlooked in external applications. In 

a case study, the effect of deploying heat pumps on the water distribution net-

work mains was assessed as a supplement to the district heating system of Co-

penhagen. A net heat extraction potential of 20.7 MW was estimated. Moreo-

ver, this caused the share of users complying with an upper temperature limit 

of 12 ºC to increase from 41% to 81% during August. In another case study, 

smart meter water consumption data were linked to an urban drainage model 

to compare simulated wastewater flows with in-sewer observations. The in-

sewer observations were found to be erroneous, and the smart meter data were 

deemed more valid in estimating dry weather flow than in-sewer observations. 

Overall, the project showed that many anomalies prevailing in the utilities’ 

asset databases and sensor data are first discovered through the application of 

the data. As long as utilities cannot maintain a high level of data reliability, it 

is doubtful whether more sensors will increase utilities’ understanding of their 

systems. The true potential of the data will not be unlocked until a high level 

of data reliability is secured. In the coming years, utilities, technology provid-

ers and researchers should together identify methods for reducing the uncer-

tainties prevailing in asset and sensor data, making it possible for the sector to 

reach higher levels of digital maturity.  
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Dansk sammenfatning 

Tilgængelighed af rent drikkevand til enhver tid tages ofte som en selvfølge. 

Desværre er den høje forsyningssikkerhed truet af en række udfordringer, så-

som global opvarmning og aldrende infrastruktur, hvilket lægger et enormt 

pres på drikkevandssystemerne, som vi kender dem i dag. Forsyningsselskaber, 

teknologileverandører og forskere arbejder derfor på at identificere optimerede 

og nye tilgange til at opretholde og forbedre kvaliteten af det leverede vand. I 

digitaliseringens tidsalder bliver datadrevne fremgangsmåder mere og mere 

vigtige, da disse har vist sig fordelagtige inden for drift og design af vandled-

ningsnet. Den øgede indsamling og anvendelse af data udgør dog også en stor 

udfordring for vandsektoren. Ph.d.-afhandlingen udviklede derfor nye metoder 

til at hjælpe forsyninger med at øge valideringen og anvendelsen af deres data. 

Dette blev gjort ved at analysere rigtige data fra fem danske forsyningsselska-

ber fordelt over seks casestudier. Ph.d. afhandlingen blev opdelt i tre trin: 1) 

dataindsamling, 2) datavalidering og datarekonstruktion, og 3) brug af dataene. 

Forsyninger installerer i stigende grad dataindsamlende enheder, såsom intel-

ligente målere (smart meters). Når forsyningerne vælger at implementere smart 

meters, skal fordelene og ulemperene imellem en fin dataopløsning (større 

brugbarhed af de indsamlede data) og transmissionsomkostningerne opvejes 

mod hinanden. En analyse af et målerdistrikt med installerede smart meters 

viste, at typiske prøveopløsninger imellem 1 og 24 timer er tilstrækkelige til at 

vurdere vandtab, så længe forsyningsselskabet har repræsentative forbrugskur-

ver fra netværket. En dataopløsning på < 1 time er dog potentielt nødvendigt 

for at opnå pålidelige vandkvalitetssimuleringer.   

Automatiske validerings- og rekonstruktionsprocesser for de indsamlede data 

bør være af høj prioritet for forsyningerne. Ph.d.-projektet udviklede en syste-

matisk tilgang til at kategorisere anomalier. Der blev introduceret fire katego-

rier, hvor Type 0 repræsenterede systemanomalier, Type 1 og 2 beskrev sen-

sordata med en lav kvalitet, og Type 3 beskrev anomalier i sensordata baseret 

på rigtige, men usædvanlige, begivenheder i ledningsnettet. Der blev udviklet 

syv forskellige valideringstest til at bestemme Type 1 og 2 anomalier. En ana-

lyse af tryk- og flowdatasæt fra tre danske forsyningsselskaber afslørede et 

stort antal af anomalier, med et gennemsnit på 10% manglende data og op mod 

35% anomalier i en af forsyningernes trykdata. Disse høje tal understreger be-

hovet for rekonstruktionsprocesser til at generere de konsistente datastrømme, 

der kræves til en pålidelig anvendelse af data. Neurale netværk blev anvendt 

som et eksempel på en metode til at rekonstruere manglende data og yderligere 
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validere tvivlsomme observationer. 

Indsamling af data fra vandforsyningssystemer er ikke et nyt koncept. Des-

værre lagres store mængder af data (såsom temperaturdata) ofte uden at blive 

brugt fordi der mangler eksempler på vellykkede anvendelser af dataene. For 

at demonstrere fordelene ved temperaturdata blev en temperaturmodel og en 

hydraulisk model kombineret for at identificere indstillingen og placeringen af 

ventiler i et netværk. Denne nyudviklede metode samt forsøg i felten førte util-

sigtet til identifikationen af forskellige Type 0 anomalier i forsyningens led-

ningsdatabase. Metoden har dermed sået tvivl om pålideligheden af den hy-

drauliske model. Så længe anomalier gemmer sig i sensor- og ledningsdataba-

ser, er det ikke muligt succesfuldt at udføre mere avancerede datadrevne ana-

lyser. Et andet problem i casestudiet var det lave antal af relevante temperatur-

data. Temperaturdata fra smart meters, som muligvis er tilgængelige fra hver 

husstand, kan bruges til at løse denne udfordring. I en anden forsynings måler-

distrikt viste smart meter temperaturdata tilfredsstillende lighed med den si-

mulerede temperatur (average root mean square error på 0,9 ºC). Dette under-

streger potentialet ved at bruge smart meter temperaturdata til mere avancerede 

undersøgelser, såsom lækagesporing og identifikation af ventilindstillinger.  

Den typiske silo-tankegang i vandsektoren resulterer ofte i, at man overser 

værdien af drikkevandsdata uden for vandforsyningssektoren. I et casestudie 

blev det undersøgt om det kan betale sig at implementere varmepumper på 

drikkevandsvandledninger som et supplement til Københavns fjernvarmenet. 

Der blev fundet et varmepotentiale på 20,7 MW. Derudover steg andelen af 

drikkevandsforbrugere, hvor den øvre temperaturgrænse på 12 °C blev over-

holdet, fra 41% til 81% i august. I et andet casestudie blev smart meter vand-

forbrugsdata koblet til en afløbsmodel for at sammenligne den simulerede spil-

devandsstrøm med observationer fra afløbssystemet. Der blev identificeret fejl 

i målerne i afløbssystemet, og smart meter dataene blev derfor vurderet mere 

pålidelige til at estimere tørvejrsflowet end observationerne fra disse målere.  

Generelt viste ph.d.-projektet at mange fejl i forsyningernes ledningsdatabaser 

og sensordata kun opdages ved at anvende dataene. Så længe forsyningerne 

ikke kan opretholde en høj datapålidelighed, er det tvivlsom om flere sensorer 

vil øge forsyningernes forståelse af deres system. Først når der kan sikres en 

højere pålidelighed af dataene, kan deres sande potentiale udnyttes. I de kom-

mende år bør forsyningsselskaber, teknologileverandører og forskere identifi-

cere metoder til at reducere fejlene som florerer i forsyningernes lednings og 

sensordata, så forsyningerne kan nå et højere niveau af digital modenhed.  
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1 Introduction 

 “Water and wastewater utilities must embrace digital solutions. There is really 

no alternative” (Sarni et al., 2019). 

This quotation originates from a report about digital water by the International 

Water Association and sets the framework for this thesis. Sarni et al. (2019) 

state that “digital water is already here”, and that utilities are evolving from 

simple to complex and interconnected institutions. In general, digitalisation 

entails a long list of benefits for the water sector. But is digitalisation really a 

straightforward path to more success? The short answer is no, as each utility is 

unique in terms of levels of digital maturity and overall needs. However, to 

give a clearer and more elaborate answer to the above question it is important 

to understand the ongoing challenges of the water sector driving the transition 

towards digitalisation. Moreover, digitalisation requires that multiple obstacles 

be addressed properly before it is possible to refer to water systems as ‘truly 

smart’ (Moy de Vitry et al., 2019). 

1.1 Challenges of water supply management 
The United Nations Sustainability Goal 6 is about ensuring the availability and 

sustainable management of water and sanitation for all (United Nations, 2019). 

Around 10% of the global population lacks basic drinking water services, half 

of the global population lives in areas that experience water scarcity at least 

one month of the year, and rivers in Africa, Asia and South America are now 

more polluted than they were in the 1990s (United Nations, 2019). In addition, 

ever-increasing urbanisation, global population growth and climate change 

have put immense pressure on the drinking water systems as we know them 

today (for example, WWAP, 2019). These factors combined with socio-eco-

nomic changes, will not only lead to changing consumption patterns but will 

also affect worldwide water consumption, which will continue to grow (about 

1% each year since the 1980s), ultimately increasing global water stress 

(WWAP, 2019).  

The summer of 2018 showed that temporal and regional water shortages oc-

curred even in areas otherwise unfamiliar with water stress, such as Denmark 

and Germany. In the future, declining amounts and decreasing quality of water 

resources will lead to an increased competition between water users, demand-

ing new ways of distributing water fairly between them (DANVA, 2018; 

German Environment Agency, 2019). 



2 

As a consequence of water stress, utilities need to pay increased attention to 

resource efficiency and the exploitation of alternative water resources 

(Rygaard et al., 2011). However, the introduction of alternative solutions, such 

as rainwater collection or wastewater reclamation, poses severe challenges that 

need to be addressed (Rygaard et al., 2011). Examples include thorough anal-

ysis of the solutions’ energy requirements and effects on the quality of the de-

livered water (Rygaard et al., 2011). Thus, the overall complexity of drinking 

water supplies will continue to increase. This is also the case in Denmark, 

where, among other things, new and rising numbers of contaminants are being 

detected in the groundwater. The number of reported cases of pesticide levels 

exceeding guideline levels increased notably from 15 to 65 waterworks be-

tween 2013 and 2017 (Ministry of Environment and Food of Denmark, 2018a). 

This demands more advanced treatment processes than currently implemented. 

Moreover, long-established utilities experience that a great proportion of their 

drinking water infrastructure is past its prime. Due to this unreliable infrastruc-

ture, not only the costs of operation and management (e.g. increased leakage) 

will grow, but also businesses and the standard of living will be affected neg-

atively (ASCE, 2011). For example, investment in American water infrastruc-

ture does not keep up with need, reaching an estimated funding gap of up to 

$144 billion by 2040 (ASCE, 2011). Thus, there is an increasing incentive to 

cope with the failing infrastructure in an efficient manner due to lack of funds 

(Eggimann et al., 2017). Here, ‘efficiency’ comprises better rehabilitation 

planning (asset management) and extending the expected system lifetime, as 

well as an optimised operation and design of urban systems. For example, 

Nguyen et al. (2018) state that coarse and out-of-date information is often used 

during the design and planning of urban water infrastructure, leading to ineffi-

cient management. This is also the case for Denmark, where Kirstein (2016) 

and Kirstein et al. (2016), by analysing district metered area (DMA) data 

showed that there were significant differences between the actual consumption 

and apparently out-of-date demand patterns provided by the Danish environ-

mental protection agency (Watertech A/S, 2005). For example, application of 

out-of-date demand patterns may lead to unintentional network augmentation 

during design (Gurung et al., 2016) and doubtful hydraulic model simulations. 

1.2 Digitalisation 
Digitalisation is often pointed out as the process capable of mitigating and 

solving parts of the previously mentioned challenges. Gartner’s IT glossary 

(Gartner, 2019) defines the term as: “the use of digital technologies to change 
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a business model and provide new revenue and value-producing opportunities; 

it is the process of moving to a digital business.”  

In urban water management, digitalisation is envisioned to increase the effec-

tiveness and flexibility of urban water systems and establish the opportunity 

for new services (Moy de Vitry et al., 2019). Such opportunities have boosted 

the interest of the research community on digitalisation in the water sector, 

notably since the start of the 2000s (Figure 1).  

 
Figure 1. Normalised hits based on 1) publications concerning digitalisation in the water 

sector only and 2) publications related to water research in general. Number boxes display 

the actual hit ratio between these two categories. Scopus search (21/09/2019), Appendix A. 

This boost in research is, among other things, driven by new technologies that 

are believed to benefit the water sector in multiple ways, providing more se-

cure, resilient, reliable, efficient, cost-effective and innovative water solutions 

(Sarni et al., 2019). The literature has many promising examples justifying this 

claim (see, for example, Section 2). A comprehensive overview of the history 

and future of digitalisation in the urban water sector is given in Makropoulos 

and Savić (2019), indicating that the sector is far from being at the end of its 

digital transition journey. Sarni et al. (2019) outline a digital adaptation for 

utilities spanning steps of basic, opportunistic, systematic and transformational 

adaptation (Figure 2). Utilities around the world have already started the digital 

transformation, averaging an adoption level of ‘opportunistic’ according to a 

survey conducted in Sarni et al. (2019). Here, opportunistic accounts for, 

among other things, utilities with digital automation and control mechanisms 

and analytical tools during process optimisation.  

The digital transformation is mainly enabled through recent advances in smart 

information and communication technology (ICT) and facilitated through ap-

plications and implementations of, for example, the Internet of Things (IoT) 
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and edge and cloud computing (Eggimann et al., 2017; Kulkarni and Farnham, 

2016; Sun and Scanlon, 2019). In the water sector, these technologies have 

increased the speed of data collection and analytics notably over the last sev-

eral decades in parallel with decreasing costs, ultimately opening up the world 

of ‘Big Data’ (e.g. Monks et al., 2019; Sun and Scanlon, 2019). An example of 

how fast the sector is evolving is highlighted in Cominola et al. (2015), where 

the installation of ultrasonic smart meters was described as too costly; now it 

is state-of-the-art, as shown, for example, by the deployment of 2,300 ultra-

sonic smart meters in Northern Copenhagen (LEAKman, 2018) or by the case 

study utilities in Papers IV and VI. 

Digitalisation concerns the entire urban water sector, but this PhD study fo-

cuses only on data from water distribution systems. Whereas the collection and 

application of data from WDNs are not new to drinking water utilities, the in-

creasing volumes of data introduce challenges and potentials within the field 

of water distribution system analysis. Here, the PhD study will to a large extent 

focus on the application of data from smart meters, being a prime example of 

digitalisation. 

1.3 The digital challenges  
Simply installing more devices and collecting more data do not result in a 

higher level of digital maturity for a utility. Due to the low usage of the col-

lected data in many Danish utilities, I therefore speculate that reaching higher 

levels of digital maturity (e.g. systematic) is a more difficult (steeper) process 

than envisioned and may lead to unknown paths of rising complexity for utili-

ties (dotted lines, Figure 2). Many important factors for becoming more data-

 
Figure 2. ‘Digital Water Adoption Curve’ adapted and modified from (Sarni et al., 2019). 
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driven (i.e. relying on the collection and analysis of data) need to be consid-

ered, here divided into three steps:  

1 Data collection. It should be considered what and how much data should be 

collected. For example, Kulkarni and Farnham (2016) and Mekki et al. 

(2019) showed that the implementation of ICT comes at various costs and 

depends on multiple factors such as the selected data transmission technol-

ogies. Eggimann et al. (2017) pointed out that data-driven urban water man-

agement should aim to reach a region of optimal data availability, meaning 

that there is a point where more data is not necessarily better. Moreover, 

there is still a lack of evidence about what types and frequencies of infor-

mation best suit the needs of utilities and consumers (Boyle et al., 2013).  

2 Validation and reconstruction of data. A reliability assessment of the col-

lected data is necessary. I recognize ‘data reliability’ as a term covering the 

accuracy and completeness of collected data, which is secured only through 

forms of validation and reconstruction processes. With the increasing 

amount of data collected, it is of paramount importance that autonomous 

data collection and verification processes are in place to secure a high reli-

ability of the data (Sun and Scanlon, 2019). In a survey of the urban water 

community about how ubiquitous sensing will shape the future of the sector, 

Blumensaat et al. (2019) showed that data validation and integrated man-

agement were ranked as the two most important topics among professionals. 

It is important to be able to trust the collected data with a very high reliabil-

ity before it can be applied in decision-making processes (Blumensaat et al., 

2019). Furthermore, integrated management will play an increasing role in 

future infrastructure design, but models used for such processes are limited 

by the availability and quality of the data (Eggimann et al., 2017). 

3 Application of data. Simply assuring a high data reliability, however, does 

not release the biggest potential the sector is currently facing; the overall 

value created by the collected data from digital technologies is often too 

unclear (Sarni et al., 2019). In general, proof is still lacking as to whether 

digitalisation really leads to long-term savings and increased performance; 

this is often because it is unclear which exact challenges can and cannot be 

solved by mining the data (Blumensaat et al., 2019; Boyle et al., 2013; 

Cominola et al., 2015; Eggimann et al., 2017; Sarni et al., 2019).  

I envision these three steps as an interlinked, cyclic process, whereby new in-

sights from unsuccessful and successful data applications in step 3 may lead to 

a better understanding of data collection requirements in step 1. Furthermore, 
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Papers III, IV and VI highlighted that it is first the application of data that 

clarifies valid and invalid data, thus improving step 2. 

It should be noted that many additional important challenges and topics related 

to digitalisation, such as privacy and cyber-security concerns or a changing 

customer–utility relationship raise important questions. These were, however, 

deemed outside the scope of this thesis. 

1.4 Objectives 
Currently, digitalisation is one of the main topics of the urban water sector. In 

this thesis, I will assess obstacles and opportunities as well as develop methods 

related to 1) data collection, 2) validation and reconstruction of data and 3) 

application of the data in water distribution systems and external water-related 

systems. This is done to guide utilities towards improving the operation and 

management of their systems. This thesis addresses topics 1–3 by answering 

the following questions. 

1 Define adequate sampling resolution from smart meters. 

 What is the effect of changed sampling resolutions from smart me-

ters in hydraulic simulations?  

 What is the effect of filling gaps between measurements with differ-

ent methods? 

2 Improve the reliability of collected data in urban water systems. 

 What are the common rates and types of anomalies in water network 

data?  

 How can we improve future data collection procedures? 

3 Evaluate new ways to use collected data in water distribution systems.  

 Which benefits can be obtained by analysing temperature data col-

lected in the water distribution network and from smart meters?  

 What is the impact on consumers and the distributed water quality 

when installing heat pumps in water distribution networks? 

 How can smart meter data be used to estimate wastewater flows? 

A major focus of this thesis is the application of ‘real-world’ data to answer 

the above stated questions. In short, ‘real-world’ case studies from five differ-

ent utilities are used to outline the current state of digitalisation.  
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1.5 Thesis structure 
The thesis structure follows the data flows in a water utility (Figure 3). 

  
Figure 3. Conceptual overview of data flows in a water utility. The focus of each chapter is 

delineated by blue boxes. 

The collected data needs to undergo various processes (indicated by boxes and 

arrows in Figure 3) prior to successful application, guiding the remainder of 

this thesis. 

 Chapter 2 (Digitalised water supply systems) introduces commonly in-

stalled data-collection devices in drinking water distribution networks 

(WDNs), including the benefits and pitfalls of these technologies. 

 Chapter 3 (The urban water data warehouse) highlights the need for utilities 

to rethink their data gathering (Step 1) and processing in forms of validation 

and reconstruction (Step 2) prior to successful application of the data (Pa-

pers I and II): 

 The first step includes data collection. Paper I highlights how sampling 

resolutions affect pressure and water age simulations as well as water 

loss assessments.  



8 

 Next, it is important to maintain a high level of reliability of the col-

lected data. Paper II shows how the data can be validated and how errors 

in data collection can be identified. An example of reconstructing data 

is given in Section 3.2.4 

 Chapter 4 (Novel data applications and modelling for enhanced system 

analysis) addresses new opportunities (Step 3) from data collected in WDNs 

for optimised water distribution system analysis (Papers III and IV) and 

external research fields (Papers V and VI). 

 WDN-related applications. Papers III and IV show how temperature data 

collected in the network can be used to improve the operation and man-

agement of WDNs. 

 External applications. Papers V and VI show that temperature and smart 

meter data are beneficial for management/operation of systems outside 

the ‘WDN bubble’, such as district heating and urban drainage. 

 Chapter 5 (Conclusion) summarises the main results. 

 Chapter 6 (Perspective) lists future research possibilities, risks and chal-

lenges that need to be addressed. 

The applied real-world data across six case studies covers smart meters at the 

household level, meters at WDN level and manual sampling of flows, pressure 

and temperatures (Table 1). 

Table 1. Overview of real flow (Q), pressure (P) and temperature (T) data collected by 

smart meters, sensors in the water distribution network and manual sampling.  

Data source Smart meter (household) Water distribution network Manual sampling 

Parameter Q T Q T P T P 

Paper I X  X  X   

Paper II   X  X   

Paper III   X X X X X 

Paper IV X X X X X   

Paper V      X  

Paper VI X  X     
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2 Digitalised water supply systems 

Currently, the amount of data collected from devices deployed in urban water 

systems is increasing notably. Examples include sensors monitoring various 

forms of parameters, such as flow and pressure meters, pumps and valves col-

lecting data about their state (e.g. on or off) and acoustic loggers recording the 

level of noise at selected locations. The data collected from such devices is 

useful for monitoring, control, design and planning purposes. Kulkarni and 

Farnham (2016) gave an overview of (smart) ICT deployed in water distribu-

tion systems, subdividing the field of water monitoring into pressure and flow 

management, consumption monitoring, water loss management and water qual-

ity monitoring. I used these categories to classify commonly implemented data-

collection devices according to their major objectives in WDNs (Table 2). 

Here, actuators (pumps and valves), as well as non-data-driven drivers (e.g. 

customer satisfaction) have been deemed outside the scope of this thesis. The 

following section addresses each of the devices listed in Table 2. 

Table 2. Major data-collection devices deployed in water distribution networks and their ap-

plication in water distribution system analysis, based on my categorisation. 

          Drivers 

                         Devices 

Pressure & flow 

management 

Consumption 

monitoring 

Water loss 

management 

Water quality 

monitoring 

Flow & pressure meters (distribution level) X X X  

Water quality sensors    X 

Noise loggers    X  

Smart meters (consumer level) X X X X 

2.1 Flow and pressure meters (at distribution level) 
Pressure & flow management. Flow and pressure sensors installed at DMA 

level or other critical locations (e.g. tanks or reservoirs) have been an integral 

part of many utilities for decades (even though Puust et al. (2010) described 

the installation of flow meters as “a recent trend”). For example, in combina-

tion with hydraulic models, the collected data may be used to simulate the flow 

and pressure throughout the network and highlight areas with pressure deficits 

or long retention times. Pressure monitoring and management are also directly 

connected to water loss management, as higher pressure may lead to higher 

leakage rates (see below). Furthermore, pressure and flow data play a major 

role in real-time control of WDNs, as the data is used to remotely control the 

states of pumps and valves (e.g. Creaco et al., 2019). Some of these pumps and 

valves are termed ‘intelligent’ as they are capable of taking decisions inde-

pendent of remotely controlled set-points, such as in the case of blackouts or 

connectivity issues (e.g. AVK, 2018). 



10 

Consumption monitoring. In terms of consumption monitoring, the data can be 

used to gather information about the consumers in the area, e.g. based on 

DMA-level measurements useful for data reconstruction purposes, demand 

forecasting and design of networks (e.g. Kirstein, 2016; Kirstein et al., 2016). 

Application of forecast models that rely on demand data from flow meters, is 

expected to increase, as already seen for optimal pump control in Dutch water 

supply systems (Bakker et al., 2014). 

Water loss management. DMA data can be used for leakage detection. One of 

the most common approaches in using flow data for leakage detection is mini-

mum night flow (MNF) analysis (for example, Puust et al., 2010). In MNF 

analysis, the water inflow into an area is measured (e.g. between 02:00 and 

05:00) and legitimate uses are subtracted. High deviations in MNF can then be 

used to detect leakages and bursts. Good knowledge of the downstream area is 

important when installing sensors, as otherwise it is possible that the installed 

sensors will not be sensitive enough to detect the MNF, as seen in the applied 

data in Paper II. In addition, more sophisticated approaches can be applied, 

such as data-driven methods for automatic burst detection in WDNs (Wu and 

Liu, 2017). Here, the quality of the data constitutes the main uncertainty, with 

flow measurements being more reliable (though also more expensive) than 

pressure measurements (Wu and Liu, 2017). Most sensors are deployed at 

DMA level, being capable of detecting bursts in the range of 1.5–50% of aver-

age DMA inflow, but the success of the reviewed methods were difficult to 

compare owing to the varying nature of the case studies (Wu and Liu, 2017). 

Wu and Liu (2017) also state that finer sampling rates and data communication 

frequencies (e.g. < 5 minutes) could reduce detection times.  

2.2 Water quality sensors 
Water quality monitoring. In general, the monitoring of water quality has been 

deemed to be one of the most difficult parameters to “monitor remotely and 

reliably” (Makropoulos and Savić, 2019) owing, among other things, to the 

high number of possible contaminants and entry points (Adedoja et al., 2018; 

Eggimann et al., 2017). Moreover, Makropoulos and Savić (2019) state that 

additional work is needed on novel water quality sensors. An overview of mi-

crobial sensors from 2015 can be found in Tatari et al. (2016), showing that 

the response time of many sensors varies (examples in Tatari et al. (2016) be-

tween 10 minutes and 18 hours), depending on which parameters are measured. 

Tang and Albrechtsen (2019) list commercially available technologies for real-
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time or near-real-time monitoring of water quality (albeit from the food indus-

try), of which the most common parameters included pH, turbidity and con-

ductivity. Currently, technologies behind sensors measuring microbial water 

quality as well as physiochemical properties of the water are being rapidly de-

veloped (Tang and Albrechtsen, 2019). Thus, it is believed that the number of 

water quality sensors will increase notably in the coming years. Potentially, the 

number of water quality parameters monitored can also lead to the detection of 

leakages, among other things because turbidity can increase during pipe burst 

events (Puust et al., 2010). 

Temperature measurements in the WDN can be used as a simple water quality 

indicator and guide utilities to locations of water quality audits, among other 

things because temperature affects the growth rates of biofilm-forming bacteria 

(Liu et al., 2016) and because temperature measurements are an indicator of 

the water’s residence time in the WDN (Papers III and IV). Thus, temperature 

can be selected as a parameter useful for the identification of relevant moni-

toring sites (for example, Larsen et al., 2017). 

2.3 Noise loggers 
Water loss management. Typically, acoustic loggers attached to pipe fittings 

record the level and spread of noise in pipes to detect leakages by statistical 

analysis (Puust et al., 2010). Leakage correlators use the signal between two 

adjacent noise loggers to correlate and narrow down the area of leakages (see, 

for example, Li et al. (2015) for further information on acoustic detection meth-

ods).  

2.4 The smart meter revolution 
Here, smart meters are understood to be meters at the household level. Smart 

meters exemplify the digital transformation in the water sector more than any 

other device, as they affect both utility and consumers and can play a major 

role in integrated urban water management. The meters are termed ‘smart’ be-

cause water consumption and other parameters are measured on a less than 

daily basis and are collected remotely, opening up various possibilities within 

data analytics with benefits for the utility and consumers (Boyle et al., 2013; 

Cominola et al., 2015). Also, technological advances have made it possible to 

implement additional monitoring capabilities in smart meters, no longer limit-

ing meters to only monitoring the demand. 

Advances in sensing have made meters (e.g. ultrasonic smart meters) more ac-

curate and less fragile compared to mechanical meters, and the implementation 
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of smart meters has increased notably over the last few decades (Boyle et al., 

2013; Cominola et al., 2015; Kamstrup, 2019a). For example, based on a sur-

vey of 55–60 participating utilities, the number of remotely read meters at 

household level in Denmark increased from 15% to 46% between 2013 and 

2017 (DANVA, 2018). However, the literature also points out that on a global 

scale, the majority of digital metering rollouts were conducted on smaller scale 

trials. Furthermore, the rollout was slower than expected, partly because many 

of the benefits are difficult to monetize or utilities struggle to see the benefits 

of the data (Monks et al., 2019; Stewart et al., 2018; Paper IV).  

Based on a comprehensive literature search and survey among experts, Monks 

et al. (2019) revealed in total 75 benefits for utilities and customers when im-

plementing digital metering. These included, among other things, enhanced in-

teraction between consumers and the utility, greenhouse gas reductions due to 

reduced driving, and more efficient billing (Monks et al., 2019). Smart meter 

deployment reduces one of the major limiting factors of water distribution sys-

tem analysis: the unknown demand. However, as long as utilities do not apply 

this data in analyses, such as in near-real-time water loss assessments, in hy-

draulic online models or in demand forecasting, the benefits of smart meter 

deployment are less obvious for utilities with a basic level of digital adaptation 

(Figure 2). In the following, data-driven benefits of smart meter deployment 

will be discussed concerning the categories listed in Table 2. 

Pressure & flow management. The increased data quantity and quality from 

smart meters can be a major driver for improved hydraulic model accuracy in 

terms of flow and pressure simulations. Naturally, the resemblance of the DMA 

inflow with smart meter consumption data increases when using daily or less-

than-daily consumption data, compared to coarser audit data (e.g. quarterly) 

(Paper I). Smart meters may also be used to remotely disconnect users from 

water, e.g. during maintenance or when bills have not been paid (e.g. Blokker, 

2019). 

Consumption monitoring. One major driver for installing smart meters is water 

demand management, as smart meters can help to increase awareness about 

water usage and thus lead to reduced consumption (Boyle et al., 2013; Nguyen 

et al., 2018). Here, disaggregation of the consumption data into specific usages 

can increase the awareness of users about their consumption (e.g. the specific 

water usage of certain appliances) and help the utility with managing demand 

peaks (Cole and Stewart, 2013; Cominola et al., 2015; Nguyen et al., 2018; 
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Stewart et al., 2018). Digital metering can also be used to improve infrastruc-

ture planning and reduce network augmentation, which is particular evident for 

consumers with little information prior to data collection (Gurung et al., 2016, 

2014; Monks et al., 2019). 

Water loss management. Smart meter data can help to establish temporary or 

permanent DMAs and enable detailed water balances and post-meter leakage 

detection, e.g. based on leak alarms (e.g. Monks et al., 2019). Furthermore, 

more accurate estimates of water loss components, such as background leak-

age, can be achieved (Loureiro et al., 2014). Newer smart meters may even be 

equipped with inbuilt noise loggers intended to improve post-meter and net-

work leak detection (Kamstrup, 2019b). Moreover, Bragalli et al. (2019) ana-

lysed the impact of an increasing number of missing smart meters from apart-

ment blocks and single houses on the error of the estimated water loss. The 

results of estimated water loss worsened notably for missing large-scale con-

sumers (i.e. apartment blocks) compared to single houses. This is important for 

utilities, as the deployment of smart meters at large-scale consumers may be 

more troublesome, for example, because a different type of smart meter needs 

to be installed and a larger number of people/businesses are affected. 

Water quality monitoring. Monks et al. (2019) list only few water quality re-

lated benefits of smart meters, but state that the implementation of water qual-

ity testing at customer meter level might help to reduce the number of required 

audits. Yet, according to Blokker (2019), no microbiological parameters (or 

parameters related to water quality, such as pH) are monitored with smart me-

ters. Temperature is an often sampled parameter as it may be collected as spin-

off from ultrasonic smart meters; however, utilities struggle to know how to 

use the data (Blokker, 2019; Paper IV). Additional potential benefits of (smart 

meter) temperature data based on Papers III and IV are listed in Sections 4.1 

and 4.2. 

Also, smart meter data can be beneficial as input to enhanced demand 

knowledge from a water-energy-nexus point of view (Stewart et al., 2018). 

Smart meter temperature and consumption data can help to identify certain pipe 

and soil characteristics and estimate the heat transfer potential of drinking wa-

ter in WDNs, e.g. as a low-temperature source in district heating systems (Pa-

pers IV and V). Furthermore, smart meter data can be an integral part of esti-

mating the wastewater flow and as a validation tool of in-sewer flow observa-

tions in urban drainage management (Paper VI). 
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3 The urban water data warehouse 

Gartner’s IT glossary (Gartner, 2019) defines a data warehouse as a “storage 

architecture designed to hold data extracted from transaction systems, opera-

tional data stores and external sources”. I envision the urban water data ware-

house as the location where data from multiple sources, such as sensors and 

asset data, is collected as well as made available for a variety of applications 

through extract, transform and load processes. As utilities become increasingly 

data-driven, it is important that they secure highly reliable data in the ware-

house. However, prior to the rollout of new ICT, such as smart meters and flow 

or pressure sensors throughout their network, a utility should ask itself what its 

general goal is in installing the new technology. Is it to facilitate the billing of 

customers, to provide near-real time leakage monitoring and demand forecasts 

or to provide water quality estimates for use in the case of contamination?  

If data-driven goals are of significance for a utility, the above-mentioned ques-

tions are important because the actual use of the data in the utility drives the 

maintenance of a high reliability of the collected data in WDNs (Papers I–IV 

and VI). 

In other words, I speculate that data used proactively by utilities show fewer 

anomalies and these, if detected, are given higher priority. This is not the case 

for sparsely used data, where errors prevail for longer periods (Papers II and 

III). This may in some cases lead to a wrong understanding of the data quality 

and false trust in data. 

The applicability of data depends, among other things, on where the data is 

collected. However, identifying optimal sensor locations – such as of water 

quality sensors for contaminant detection (e.g. Adedoja et al., 2018), pressure 

meters for burst detection (Wu and Liu, 2017), or which consumers should be 

favoured during smart meter enrolment (e.g. Bragalli et al., 2019) – were 

deemed outside the scope of this thesis.  

As with the location of data collecting devices, the sampling resolution (i.e. 

the time step between measured data points) has a significant impact on the 

achievement of the ‘digitalisation goals’ of a utility, as described below. 

3.1 Sampling resolution and gap filling 
ICT deployments have a trade-off between transmission costs and applicability 

(amount of collected information). Among other things, transmission costs de-

pend on the selected network, message sizes, and costs of data collection 
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(Kulkarni and Farnham, 2016; Mekki et al., 2019). 

Cominola et al. (2018) and Nguyen et al. (2018) showed the benefits of having 

very fine sampling resolutions of smart meter demand observations (< 1 mi-

nute) resulting in successful end-use disaggregation. Furthermore, Cominola 

et al. (2018) showed that there can be up to 62% difference in the magnitude 

of peak demands based on a 10-second compared to a 24-hour sampling reso-

lution. Gurung et al. (2014) showed that this is important because detailed 

knowledge about peak demands based on a fine sampling resolution can pro-

vide better demand patterns and subsequently reduce network augmentation. 

In terms of generating reliable water quality simulations, the spatial aggrega-

tion and sampling resolution of demands are of importance (Blokker et al., 

2008). Depending on the set-up, a 1-hour time step can be sufficient for water 

quality simulations of large demand aggregations (e.g. transportation system 

models), but sampling resolutions below 5 minutes are required to generate 

reliable results for smaller networks (Blokker et al., 2010, 2008). Also, Creaco 

et al. (2017) showed that pressure simulations are largely affected by the sam-

pling resolution and demand modelling approach. Whereas a top-down ap-

proach (applying a demand multiplier on coarse readings) first leads to accepta-

ble simulations at sampling resolutions of demands and modelling time steps 

> 1 hour, a bottom-up stochastic approach (generating unique demand profiles 

for each consumer) can generate reliable pressure simulations at time steps > 

2 minutes, which is important when running near-real-time simulations 

(Creaco et al., 2017).  

Smart meter data represent the actual demand from each household. Incorpo-

rating such data into hydraulic models can enable the monitoring of WDNs in 

near real-time. Compared to stochastic bottom-up demand allocation ap-

proaches (e.g. Blokker et al. (2010) and Creaco et al. (2017)), Paper I applied 

the actual consumption from each individual household’s smart meter as input 

to a hydraulic model of a case study DMA, to assess the effect of common 

smart meter sampling resolutions on pressure, water age and total consumption 

simulations. Accumulated volume readings from each smart meter were avail-

able with a sampling resolution averaging 30 minutes/sample. To align the ran-

dom nature of each sample’s timestamp, gaps between samples were filled by 

linear interpolation and a demand-pattern-based approach. Hereby, aligned and 

unique consumption data time series were generated for each smart meter, 

making it possible to aggregate the consumption from different consumers in 

the hydraulic model’s nodes. The model was ran in 5-minute time steps to com-

pare the model’s results with the 5-minute sampling resolution of the DMA 
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inflow. This approach was repeated with gradually coarser sampling resolu-

tions. Resolutions commonly sampled by Danish utilities were thus estab-

lished, ranging between 30 minutes to 24 hours/sample (Paper I).  

For pressure simulations, the results showed that there was little difference in 

the root mean square error (RMSE) between assessed sampling resolutions, 

mainly because of the overall low pressure head loss through the network. Even 

combining a representative demand pattern with very coarse demand readings 

(e.g. quarterly) turned out to be sufficient compared to finer sampling resolu-

tions when simulating pressure (RMSE < 0.1 m) (Paper I).  

In terms of water age, however, there is a clear benefit from collecting finer 

sampling resolutions. Thus, if utilities are concerned about retention times and 

interested in water quality simulations, finer sampling resolutions should be 

favoured (Paper I). This is also shown in Paper IV, where the sampling resolu-

tion of around 30 minutes/sample is the major restraining factor of more de-

tailed temperature analyses (see also Section 4.2).  

When very coarse readings (e.g. quarterly) are available in combination with 

reliable demand patterns, the RMSE of total DMA consumption was only 

around 0.5 m3/hour higher (though approximately equal to the DMA’s MNF) 

than when using a fine sampling resolution (Paper I). However, such a good 

demand pattern might only be available from smart meter data which has a fine 

resolution.  

When having sampling resolutions finer or equal to 2 hours, there was little 

difference between the two gap-filling methods; at coarser resolutions, how-

ever, the demand-pattern-based gap-filling method outperformed linear inter-

polation.  

Thus, the following could be concluded on sampling resolutions and gap filling 

from smart meters. 

 Fine sampling resolutions (< 1 hour) should be used when utilities are in-

terested in a high level of detail about the consumption in their systems. 

This knowledge improves the validity of water quality simulations relying 

on accurate simulation of the water’s retention time in the WDN. 

 Coarse sampling resolutions (1–24 hours) are sufficient when the overall 

goal includes daily water loss assessments and when assessing the pres-

sure in areas with overall low pressure head loss. 
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 At coarse sampling resolutions (> 2 hours), a demand pattern based ap-

proach to gap filling between samples is preferred over linear interpola-

tion. 

 

3.2 Validating and reconstructing data 
Data cleansing, including validation and reconstruction processes, is a major 

concern in almost all fields of research and applications related to environmen-

tal water management (Sun and Scanlon, 2019). Owing the increasing amount 

of data collected, the quality control, validation and easier access to data are 

“expected to be at the heart of the next steps in hydroinformatics” 

(Makropoulos and Savić, 2019). Without such steps, the value of the collected 

data decreases notably and might lead to false acts on incorrect data (e.g. 

Blumensaat et al., 2019). The first statement in the Introduction could thus be 

reformulated: 

“Water and wastewater utilities embracing digital solutions have to include 

data validation and reconstruction processes. There is really no alternative.” 

Data validation has been part of the urban water sector for decades, covering 

fields such as urban hydrology (e.g. Branisavljević et al., 2011; Mourad and 

Bertrand-Krajewski, 2002) and water distribution systems (e.g. Cugueró-

Escofet et al., 2016; García et al., 2017; Quevedo et al., 2010). Unfortunately, 

the implementation and focus on automatic data validation has not kept up with 

the interest in data collection and application. This needs to change as utilities 

become increasingly data-driven. The steps of validation and reconstruction 

may seem very obvious, but real-world examples (Papers II, III and VI) reveal 

that this is tricky and often only practised to a limited extent.  

3.2.1 Need for automatic data cleansing 

An example of why automatic validation and reconstruction of water network 

data is of such crucial importance is shown for a real-pressure time series col-

lected at the exit of a DMA in Denmark (Figure 4). Visualization of the raw 

time series (Figure 4a) highlights data points that can be deemed unfeasible 

(1.5·109 m). Removing these anomalies from further analysis results in Figure 

4b, indicating that additional data points exist that are highly doubtful in the 

area (recurring pressure measurements). When omitting these anomalies, the 

time series looks more trustworthy, as shown in January 2014 (Figure 4c). 
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However, even here, anomalies are still visible in the form of two flatline seg-

ments. After a more exhaustive identification and potential reconstruction of 

invalid data points, the data quality may be considered as ‘good’. For example, 

Figure 4d shows a day of plausible measurements in 2016. Nevertheless, a con-

trol measurement was conducted on the same day by the utility, highlighting a 

pressure difference of 3 m. Additional control measurements conducted at ear-

lier and later stages confirmed similar deviations. This shows that, even though 

the data looks ‘good’, there might be essential flaws in it, as the pressure sensor 

might have incorrect time settings, drifted over many years, or wrong location 

coordinates in the utility’s asset database.  

Being one example out of thousands of sensors deployed means an obvious 

need for automatic validation and reconstruction of data. Even more important, 

this example shows that even though data looks ‘good’ , users should retain 

some scepticism regarding the truth of the data, as this otherwise may lead to 

incorrect decisions, e.g. when this data is used in a real-time control setup. 

3.2.2 Anomaly types 

As seen in Figure 4, many types of anomalies exist in the data collected in 

WDNs, owing to transmission errors, meter malfunctions, system operations, 

etc. (for example, Loureiro et al., 2016; Quevedo et al., 2017). In Paper II, 

  
a) Raw time series. b) Modified time series  

(outliers from a removed). 

  
c) Modified time series, zoom January 2014 

(outliers from a and b removed). 

 d) Modified time series, zoom 7th June 2016 

(outliers from a and b removed). 

Figure 4. Example of pressure time series (● measurement ● anomaly ● control) collected 

at a district metered area outlet in Denmark. 
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anomaly types were subdivided into three different categories (Types 1–3), de-

scribed in detail in Figure 5. However, Papers III, IV and VI revealed a more 

‘general’ anomaly type that is difficult to quantify, but needs to be addressed: 

if the understanding of system attributes is misconceived (Type 0, Figure 5) 

the application of data will be troublesome.  
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Type 0  
Incorrect or missing information of system attributes, e.g. incorrect GPS coordinates, wrong 

conceptualisations of data flows, missing users and unknown valve status/locations. 
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Type 1  Type 2  Type 3  
 

Anomalies caused by 

faults internally in the me-

ter, during transmission, 

storage, etc. that cannot 

be due to any state of the 

water distribution network 

(illegitimate data). 

 
 

Measurements that affect 

the data quality negatively 

but have some valuable in-

formation left. Examples 

include a loss in sensitivity 

or miscalibrations of sen-

sors. 

 
 

Abnormal measurements 

that are caused by actual 

events appearing in the 

network, such as leakage, 

irregular consumption or 

valve openings. 

   

 

 

 

Low  

 

Level of information  

 

High  

 

Figure 5. Classification of anomalous data collected in water distribution networks (Paper II) 

with additional system anomaly description of Type 0. 

3.2.3 Identification of anomalies 

Seven tests were proposed in Paper II to detect anomalies of Types 1 and 2, i.e. 

errors that do not reflect the true state of the water distribution systems: dupli-

cate timestamp test; illegitimate format test; range test; rate of change test; 

flatline test; timestamp inconsistency test; and a timestamp drift test. An online 

tool was generated during the PhD research, whereby the seven tests can be 

run: https://leakagemanagement.net/meter-validate/.  

The seven tests were run on flow and pressure data sets from three Danish 

utilities, covering on average 32 months. The results showed that a varying 

proportion of anomalies were found in all utilities’ data sets, averaging be-

tween 3% and 35%. Even though only a small proportion of data points was 

identified by the timestamp inconsistency test, the analysis showed that these 

anomalies covered around 10% of the time in the data sets of the three utilities 

(i.e., on average, 10% of data was missing). This clearly highlights the strong 

need for validation and reconstruction of the collected data in Danish utilities. 

Furthermore, the tool’s practicability for reducing the amount of anomalies 

prevailing for long periods is exemplified in a monitoring or operational setup 

(Figure 6). Figure 6a shows the incoming data for ten flow (Q) and ten pressure 

https://leakagemanagement.net/meter-validate/
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(P) sensors over time, with invalidated data coloured in red from the seven 

tests. The figure shows 1) that some anomalies occur at the same time, and 2) 

that there are specific sensors with either no data or a higher number of anom-

alies. Such a visualisation can help the utility to discover overall issues within 

data collection and react quickly to such data quality and collection issues. 

Figure 6b shows the percentage of flatline anomalies (being the major anomaly 

contributor) for all 22 pressure meters in one of the utilities from Paper II. Such 

a visualisation can be used to prioritise which meters should be calibrated first 

and to rank the reliability of the meters. 

 

 

(a) Daily data verification. (b) Flatline anomaly test analysis. 

 

Figure 6. Example of anomaly visualisation for operational use. (a) Raw meter data valida-

tion from ten flow (Q) and ten pressure (P) meters in July 2015. (b) Mean flag rate based on 

all raw data points for the flatline test in pressure meters. Whiskers display the total flag rate 

based on all anomaly tests in the individual pressure meter, highlighting that flatline anom-

alies are the major anomaly source. From supporting information, Paper II. 

3.2.4 The value of anomalies 

Analysis of anomalies can help to identify general errors in data collection and 

transmission. For example, Figure 6a shows that data from multiple sensors 

were repeatedly invalidated for one hour around midnight. Whereas these me-

ters were not physically attached to the same part of the WDN, the data was 

collected in the same database and the error is therefore likely to have origi-

nated from the utility’s database setup. Therefore, anomalies were stored as an 

amendment to the operational database in a ‘malfunction indicator database’ 

in Paper II. For example, the Jaccard Index (e.g. Tan et al., 2006) can then be 

applied to identify similarities between anomalies. Application of this similar-

ity measure revealed multiple issues, potentially related to transmission and 

connectivity problems (Paper II).  
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3.2.5 Higher-level validation of anomalies and reconstruction 

As stated in Paper II, various methods exist for reconstructing invalidated data. 

These include time-series analysis, physically based models or machine learn-

ing approaches such as artificial neural networks (ANNs) (e.g. Branisavljević 

et al., 2011; García et al., 2017; Mounce et al., 2010; Quevedo et al. , 2010). 

Figure 7 shows an example of training multiple ANNs to reconstruct missing 

or invalidated pressure and flow data, respectively, and to validate Type 3 

anomalies. The ANN training was solely based on validated data from other 

sensors with similar dynamics deployed in the utilities’ networks (see Appen-

dix B for further information).  

 
Figure 7. Measured (—) and reconstructed (—) pressure and flow time series from two 

Danish utilities. See Appendix B for more information. RMSE = root mean square error. 

In both time series, the reconstructed data follow the real measurements ade-

quately (Figure 7). The upper panel shows the potential of reconstructing data 

for validation purposes and identification of Type 3 anomalies. On 18 Decem-

ber a much higher flow rate was measured than predicted. As the reconstructed 

data is solely based on other sensors in the network, this might indicate that 

other sensors in the network were affected simultaneously, indicating that this 

event was a Type 3 anomaly caused by a legitimate measured network opera-

tion affecting larger parts of the network. The lower panel indicates that miss-

ing data around 28 December can be filled by ANNs to generate uniform data 

streams.  

Thus, the following can be concluded based on the work from Paper II. 
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 Pressure and flow data sets from three Danish utilities revealed a high need 

for validation, as a large proportion of anomalies prevailed for long peri-

ods in the utilities’ data sets, with one data set having 35% invalid data 

(Types 1 and 2).  

 The proposed methodology helps utilities to monitor their data collection 

and can be used as an operational tool to quickly act on and reduce Type 

1 and Type 2 anomalies. 

 On average, 10% of the period covered by the utilities’ data sets was miss-

ing. This highlights the need for reconstruction processes, as data applica-

tions require uniform and reliable data streams. Reconstruction can also 

be used to further validate Type 1, 2 and 3 anomalies. 

  



24 

  



25 

4 Novel data applications and modelling 

for enhanced system analysis 

After collection and quality control, the data can be applied for the monitoring, 

operation, control and design of WDNs. Research has begun into digital ‘multi-

utilities’, whereby data from other sectors, such as gas and electricity, are cou-

pled with water data to produce enhanced demand management strategies and 

the opportunity for new services and businesses (Stewart et al., 2018). How-

ever, silo thinking may be a limiting factor for sharing of data from different 

sources both within and between institutions, because utilities are complex or-

ganisations with multiple departments and differing objectives (Kulkarni and 

Farnham, 2016; Sarni et al., 2019). Thus, the first stage of data collection and 

processing (Figure 3) should not be seen as a process covering only data from 

the WDN, but also include data from other sectors and sources (that needs to 

be easily accessible (e.g. Makropoulos and Savić, 2019; Sarni et al., 2019)). 

Likewise, the application of data is not restricted solely to the field of WDN 

analysis (Figure 3).  

Even if data sharing between institutions is successful, one major problem of 

the increased data collection is the missing expertise, experience and examples 

of possible applications of the collected data streams. In the following, I will 

demonstrate four examples of ‘surplus value’ from the collected data, with a 

major focus on temperature data, as utilities often do not know what to do with 

this data. The first two examples concern mainly optimised water distribution 

system analysis, whereas the latter two display the external fields of district 

heating and urban drainage. 

Temperature simulations in water distribution networks  

Besides the simple water quality monitoring benefits discussed in Chapter 2, I 

believe that temperature measurements from both smart meters and the WDN 

have an important function that is not yet fully exploited: As the water is heated 

up or cooled down throughout the network, temperature measurements store to 

some extent the history about the path of the water. It is this effect that is ex-

plored in Papers III–V. 

Heat transfer models describe the change in water temperature over time in a 

WDN (Blokker and Pieterse-Quirijns, 2013; De Pasquale et al., 2017; Paper 

V), and include four particularly important parameters that need to be consid-

ered: 1) the undisturbed soil temperature, determining whether the drinking 
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water is heated up or cooled down throughout the network; 2) the inlet (initial) 

water temperature; 3) the time that the water has spent in the network; and 4) 

the heat transfer coefficient, taking into account thermal resistances of soil and 

pipe materials, among other things. The latter is subject to variations in the 

literature, and Papers III–V apply the Hubeck-Graudal implementation (Paper 

V). 

Figure 8 illustrates the concept and effect of these four parameters on a simple 

network setup (Figure 8a) with two parallel running pipes with different insu-

lating materials. Varying demand and closing of either pipe will change the 

time spent by the water in the WDN. Figure 8b shows the effect of varying 

demand on the retention time of the water in the WDN and thus the simulated 

end temperature, depending on whether the unlined cast iron or polyethylene 

pipe are closed or both pipes are kept open.  

 
 

(a) Network setup. (b) Temperature simulation. 

Figure 8. Modelled temperature variation when closing a polyethylene (PE) or unlined cast 

iron (CI) pipe, or having both pipes open. Based on the temperature model described in Paper 

IV. 

In the following, two examples are described showing that temperature data 

from the distribution system, as well as from smart meters, can be used to up-

date utilities’ understanding of their systems. 

4.1 Improved system understanding through 

temperature modelling 
As shown in Figure 8, the state of valves in particular can have a major effect 

on the temperature fluctuations in the WDN. To show whether the application 

of temperature data can help in identifying major system anomalies (Type 0, 

Figure 5) otherwise overseen in WDNs, the effect of open and closed valves 

on temperature simulations was analysed in Paper III. 
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Knowing the location and correct status of valves (i.e. open or closed) is of 

paramount importance for utilities. The list of possible negative consequences 

is long and includes: areas incorrectly narrowed down during contamination 

events; improperly working fire hydrants; and a greater proportion of affected 

customers without service during construction works (Deb et al., 2012; 

Delgado and Lansey, 2009; Wilson, 2011). Moreover, anecdotal evidence from 

Denmark indicates that DMA water balances that do not add up are often a 

result of unknown valve status. To mitigate these problems, utilities often 

maintain databases on the location and status of valves (Walski et al., 2003). 

Even if utilities are unaware about the actual status of a given number of valves, 

the state of the valves is often assumed known in WDN model analyses (e.g. 

Sophocleous et al., 2017; Wu et al., 2012). Including such possible incorrect 

valve settings in a hydraulic model generates unreliable results, particularly 

when simulating water quality (Savic et al., 2009).  

In the literature, examples exist where the correct location and status of valves 

were identified by combining a hydraulic model with pressure and flow meas-

urements (e.g. Delgado and Lansey, 2009; Do et al., 2018; Sophocleous et al., 

2017; Walski et al., 2014; Wu et al., 2012). Yet none of these studies has in-

corporated temperature measurements as an additional parameter. One major 

issue of combining models with flow and pressure data to determine the valve 

status is the lack of significant head loss throughout the WDN. For example, 

there was as little as an average of 0.2 m head loss throughout the DMA in 

Paper I. The head loss can be increased, e.g. by opening hydrants, but it is a 

rather labour-intensive approach. Thus, it was investigated whether tempera-

ture data could simplify this approach and increase chances of correct valve 

status identification and location. 

In Paper III, a semi-synthetic and a real case study were presented and a genetic 

algorithm (GA) was applied to identify the location and status of valves, in-

cluding temperature data. This type of optimisation algorithm was run to iden-

tify the best combination of open and closed valves in the WDN by minimizing 

a fitness function. As the search space of open and closed valve combinations 

can be large, the number of assessed valves was reduced where possible. For 

example, valves that disconnected consumers entirely from the network when 

closed were not considered in the search space, since this would be reported 

by consumers otherwise. The aim of the semi-synthetic case study was to show 

whether temperature measurements alone, e.g. available from smart meters, 

could be utilised to identify correct valve status. In the second case study, real 
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temperature, flow and pressure measurements from a transportation network 

were applied and the valve settings were manually tested in the field. 

4.1.1 Semi-synthetic case study  

The semi-synthetic case study included real temperature measurements at the 

inlet of a DMA. First, the synthetic ‘true’ nodal temperatures were generated 

by closing five out of the 379 valves included in the search space. The remain-

ing valves were left open. Next, starting with the assumption of all valves being 

open, the GA was applied to identify the five closed valves based solely on the 

‘true’ nodal temperatures. These would in a real case system stem from smart 

meters; however, Paper IV indicated that in reality the collection of this ‘true’ 

data set is difficult (see also Section 4.2).  

A total of 48 different GA setups were run, each identifying a best set of closed 

valves termed ‘best fit’. In these runs, the perfect solution was identified 16 

times. In total, the ‘best fits’ identified 183 out of 240 possible ‘truly’ closed 

valves and 21 incorrectly closed valves. However, these incorrectly closed 

valves were often in close proximity to the actual closed valves, and thus the 

exercise could potentially still guide utilities to areas of concern. In some runs, 

the GA was stuck in local minima, among other things, because of small tem-

perature differences occurring when closing selected valves, the relative large 

search space and the specified GA parameters.  

The GA runs showed that filling the initial GA population with a weighted 

approach (incorporating some prior knowledge based on simulations) and a 

larger initial population had the highest impact on the outcome. This is of im-

portance, as it can improve future modelling approaches. Where possible, the 

search space should be reduced by incorporating the knowledge of preliminary 

model runs and operators: “This valve should be closed in the model, and be 

excluded from optimisation, as it was tested last week”, increasing the overall 

success rate of the GA. 

4.1.2 Real transportation network case study  

The second case study analysed valve settings, a transportation WDN model 

and a week’s measured flow and pressure measurements at ten DMA inlets, 

one tank and two waterworks. As in the synthetic case, a GA was used to iden-

tify valves status. Even though some of these were marked as ‘closed’ by the 

utility, this information was not used in the modelling procedure owing to the 

high likelihood that it was incorrect. In the analysis, temperature measurements 
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at two DMA inlets in combination with all pressure measurements were incor-

porated into a fitness function. The GA was then run with no prior knowledge 

(i.e. all valves open) about the valves’ actual status. Among other things, dif-

ferent weighting scenarios between temperature and pressure measurements 

were applied in the fitness function to highlight the individual and combined 

effect of the two parameters on valve status identification. 

Identification of ‘system anomalies’ (Type 0) prior to application 

The interest in temperature data revealed various Type 0 anomalies (Figure 5). 

First, two temperature meters had to be excluded from analysis as they meas-

ured doubtful values, ranging between < -5 and > 40 ºC. Moreover, one meter 

with reliable measurements was thought to be located at the inlet of a tank, but 

preliminary temperature simulations resulted in a contradiction between the 

meter’s temperature measurements and another meter’s data  set. Discussions 

with the utility revealed two different SCADA setup diagrams, where the meter 

on the first diagram was located at the tank inlet (incorrect) and at the outlet 

(correct) on the second diagram.  

All pressure measurement sites showed reliable dynamics, but test samples 

taken at the sites revealed pressure offsets between -1.3 and 3 m. Consequently, 

the fitness function had to be modified by subtracting the simulated and meas-

ured median pressure to account for unknown drifts but still incorporating the 

dynamics in the data. 

Identification of ‘system anomalies’ (Type 0) after application 

The best fit of 30 GA runs resulted in the identification of 41 different out of a 

total of 106 possible closed valves. This number was reduced to nine valves by 

only considering those reappearing in at least 50% of the weighting scenarios. 

Two of these valves were identified only by the weighting scenario runs that 

solely included temperature measurements. Going to the field to check the ac-

tual settings of the valves revealed the following about the nine valves: 

 Two valves were locked in and reported faulty (thus, these valves’ status 

were unknown). 

 Three valves were inaccessible, e.g. owing to heavy vegetation. 

 One valve, marked as closed by the utility and scoring the highest score 

in all GA runs (closed in 24 out of 30 runs) was possibly open (unfortu-

nately, the technician was in doubt). 
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 Three valves no longer existed, and these and adjacent parallel pipes 

should be removed from the utility’s asset and hydraulic WDN model. 

The WDN model did thus not reflect the real system. 

Overall, application of the temperature model and field tests casts doubt on the 

validity of the hydraulic model. Moreover, at one critical location, temperature 

measurements indicated clearly that the water was distributed and mixed dif-

ferently than anticipated by the utility. Pressure measurements and simulations 

indicated that the water originated from a nearby waterworks, whereas temper-

ature measurements indicated that the water originated from a nearby tank. The 

latter could partially be validated during a period where the waterworks was 

running on low capacity. Only the weighting scenarios considering tempera-

ture pointed to this critical location and a ‘valve station’ was discovered with 

locked-in and rusty valves and bypasses that were not part of the asset database. 

The application of the methodology in Paper III revealed that poor data quan-

tity and quality are major restricting factors when using hydraulic and temper-

ature models for determining valve status. Additional validation tests of the 

temperature measurements and a more thorough analysis of the real status of 

the valves are required. At present, the method can be used to identify errors 

in the utility’s asset database (i.e. Type 0 anomalies, Figure 5) and of Types 1 

and 2, but it is first possible to pinpoint valves that really are closed if a high 

data reliability is also assured. Thus, whereas the valves might be closed as 

indicated by the models, the high uncertainty in the input data and unclear 

valve tests make it difficult to trust the modelling results at present. 

The following can be concluded on the applied methodology. 

 The evaluation of temperature data in combination with hydraulic data, 

prior to application of the methodology, revealed various errors otherwise 

overseen by the utility: invalid temperature and pressure observations and 

incorrect conceptualizations of where data is collected. 

 The applied methodology resulted in the discovery of forgotten and faulty 

valves and other errors originating from the utility’s asset database. How-

ever, as long as the high uncertainty in the input data is not reduced it is 

not possible to apply advanced methods such as the one presented for 

valve status detection. 

 At one location, temperature data showed that the water was mixed differ-

ently than anticipated by the utility which, among other things, based its 

knowledge on (perhaps faulty) pressure measurements. This highlighted 
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the value of using temperature data for an improved understanding of the 

WDN. 

4.2 Smart meter temperature data 
One of the restraining factors of the applied methodology in Paper III was the 

reduced number of available temperature measurements as well as their limited 

spatial distribution. Thus, Paper IV looked into the question of whether smart 

meter temperature data can be used to overcome this limit. Moreover, Paper 

IV was applied to identify whether smart meter temperature data can be used 

to validate the temperature model also applied in Paper III (Section 4.1).  

In the main, smart meter data is collected for improved billing purposes or 

enhanced water loss assessments; the temperature data, however, is collected 

as a ‘spin-off’ product and not optimised for usage. Whereas the temperature 

data applied in Paper III could be compared directly with temperature obser-

vations from the WDN, temperature data from smart meters does not directly 

represent the WDN temperature. This is because the water may spend a sub-

stantial amount of time in service pipes and (in-) house connections before 

being metered. Based on varying residence times in such connections, the 

smart meter temperature data can represent nearly the WDN temperature, the 

soil temperature, a mixture in between the two, or a temperature affected by 

other external heat sources such as the indoor air temperature (Figure 9). The 

applied real smart meter data in Paper IV thus required some classification and 

filtration prior to application.  

 
Figure 9. Variation in demand affects the residence time of the water in service pipes and 

house connections, leading to differing smart meter temperature measurements at the con-

sumers’ homes. Example from summer, with higher soil than water source temperatures.  

4.2.1 Filtration and classification of smart meter temperature data 

In the case study DMA, two weeks of temperature and consumed volume smart 
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meter data were available at all homes. The data covered a period during Au-

gust, with higher soil than DMA inlet temperatures. For most consumers, in-

formation about service pipes from the asset database were available, only cov-

ering the distance between WDN mains and stop valves on the consumers’ 

properties (Figure 9). However, no information about the pipe stretch from stop 

valves to the smart meter locations existed and the smart meter location was 

unknown, as the obtained GPS coordinates only represented the coordinates of 

the consumers’ properties. Based on this scarce information, the service pipes 

were prolonged linearly from each stop valve to the GPS coordinates of each 

property. 

Identification of ‘system anomalies’ (Type 0) through soil temperature esti-

mates 

The soil temperature was used as a boundary condition in the heat transfer 

model, but the actual soil temperature in the DMA was unknown. To mitigate 

this, the soil temperature was estimated using the smart meter temperature data. 

Low or no consumption lead to stagnant or slow-flowing water in service pipes, 

with the water temperature gradually going into equilibrium with the soil tem-

perature (Figure 9). Sudden demand pushing this ‘stagnant volume’ into con-

sumers’ homes can result in temperature samples which, to some extent, rep-

resent the soil temperature. Owing the uncertainty of service pipe lengths (and 

their diameters) between stop valves and smart meter locations and the time of 

actual consumption, a conservative filtering was applied to identify samples 

representing the soil temperature. This was done by only accepting samples 

representing: 1) retention times > 3 hours in the service pipe; 2) a consumption 

equal to 20–80% of the service pipe volume; and 3) temperature samples that 

were at most 15 minutes old (otherwise they may potentially have been affected 

by, and represented, indoor temperatures).  

Samples passing this conservative filtration revealed a slowly decreasing soil 

temperature over two weeks with some clear outliers (> ±3 ºC from mean). 

Manual inspection of all smart meter locations in a geographic information 

system revealed that these outlying temperatures were found in the only loca-

tion with two-storey houses (each storey had its own smart meter). Thus, the 

actual service pipe and house connections were much longer than anticipated. 

Furthermore, outliers of soil temperature, being colder than the mean temper-

ature, revealed locations where no stop valve information was available; thus, 

the model-building process connected service pipes to the nearest main. The 

too-cold soil temperature estimates indicated that the service pipe locations, 
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diameter or length at these locations were incorrect. Thus, analysing the tem-

perature data based on knowledge of service pipes revealed incorrect and miss-

ing information about consumers in the utility’s asset database (i.e. Type 0 

anomalies, Figure 5). Real soil temperatures are currently being sampled to 

validate the ones estimated from smart meters. 

Water distribution network temperatures 

The heat transfer model is validated by comparing the simulated network tem-

perature with ‘measured’ smart meter temperatures. Except for the DMA inlet, 

however, the actual temperature throughout the DMA was unknown, as no tem-

perature sensors were installed directly on the WDN mains. Like the soil tem-

perature, the ‘measured’ WDN temperature was therefore estimated  using 

smart meter temperature data. WDN temperatures were estimated using smart 

meter samples where at least 400% of the service pipe volume was consumed 

within 15 minutes. This conservative filtering was applied to overcome issues 

based on too coarse network skeletonisation, and to reduce uncertainties owing 

to unknown service pipe and home connection lengths and diameters. Some 

samples passing the filtering were above the soil temperature, indicating un-

certainty in the applied filtering process. This uncertainty is expected to stem 

from external heating sources, incorrect pipe characteristics estimations or 

higher local soil temperatures than expected. The remaining temperature sam-

ples showed expected variations and were used to assess the temperature 

model’s validity. 

4.2.2 Temperature model analysis with smart meter data 

The temperature model, with the soil temperature estimated from smart meter 

measurements and the measured inlet DMA temperature used as boundary con-

ditions, was run and compared to the estimated ‘measured’ network tempera-

tures for validation purposes. Samples representing the WDN temperature 

showed good match with the simulated temperature in all but two nodes having 

a mean RMSE of 1 ºC (Figure 10). Two nodes were removed from the analysis, 

as their RMSE stood out (> 6 ºC, Figure 10a), improving the mean RMSE to 

0.9 ºC. For one node, the reason was a too coarse skeletonisation during the 

building process of the hydraulic model. In the hydraulic model, smart meter 

temperatures were used to estimate the network temperature in the nearest 

node; in the real WDN, however, the temperature samples represented the tem-

perature in a side-branch, explaining the high temperature deviation between 

model and samples. In the other case, discussions with the utility revealed that 

a consumer had incorrect GPS coordinates and was not part of the DMA. Thus, 

running a temperature model showed that the model could validate data and 
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identify larger flaws such as incorrect consumers that would otherwise not be 

detected (i.e. Type 0 anomalies, Figure 5). 

 

 

 
(a) Overview of nodal RMSE in case study DMA. (b) Smart meter and modelled temperatures. 

Figure 10. Examples of temperature variation throughout the case study water distribution 

network (Paper IV). (a) Nodal root mean square error variation (RMSE) based on tempera-

ture model and smart meter temperatures. (b) Example of two nodes with an RMSE of 0.36 

ºC (upper panel) and 0.32 ºC (lower panel) where distinct colours represent individual 

homes’ smart meters. 

I believe that this small analysis revealed only a small fraction of smart meter 

temperature potentials. Future applications include, among other things, the 

following (see Paper IV for additional potentials). 

 Leakage detection, as higher flow rates lead to different temperature 

gradients than anticipated. Reliable temperature simulations can then be 

used to pinpoint locations with large differences between model output 

and temperature observations. 

 Valve status identification (similar to Paper III), as the water is distrib-

uted differently than anticipated, changing the temperature profile 

throughout the WDN. 

 Consumer alerts, e.g. when temperatures are too high or too low over a 

certain period. 

Hydraulic network setup and sampling resolution 

In particular, the way smart meter temperature data was sampled posed a chal-

lenge to the application of the data. Smart meters in the case study DMA sam-

pled a large proportion of data, where the temperatures represented a mixture 

between service pipe and household connection temperatures. In Paper IV, less 

than 0.2% of all smart meter temperature data passed the conservative filtration 
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for estimates of soil and network temperatures. A more intelligent metering 

than sampling every hour, or quasi-random as in the case study, would be pref-

erable. For example, sampling each time a certain volume has passed the meter 

could increase the percentage of applicable data. The average sampling reso-

lution in the case study of around 30 minutes was insufficient. Thus, a finer 

sampling resolution (at least during periods of consumption) would improve 

the applicability, as the uncertainty of when the water actually has been used 

is then reduced. The second challenge includes the level of skeletonisation of 

the hydraulic model, which revealed a high impact on temperature simulations. 

A higher level of detail of the hydraulic model is required in future applications 

(for example, not bundling consumers in nodes), making it possible to repre-

sent temperatures at the actual location in the WDN, and also improving water 

quality simulations.  

Currently the following can be concluded on smart meter temperature data. 

 The temperatures throughout the DMA were simulated to a satisfying de-

gree (average RMSE of 0.9 ºC). This made it possible to use the tempera-

ture model and compare the output with smart meter temperature data to 

highlight incorrect information about service pipes and consumers in the 

asset database, not found easily without these temperature data.  

 Based on the applied filtering, only a small proportion (< 0.2%) of the 

collected data could be used to represent WDN and soil temperatures, re-

vealing that smart meter temperature data is not sampled in a preferable 

manner. An improvement would include finer sampling resolutions (< 30 

minutes) or additional sampling during times of high consumption, which 

would increase the possibility of representing WDN temperatures. 

 The list of potential valuable applications of smart meter temperature data 

needing further research is long, including improved leakage detection and 

valve status identification. 

4.3 Drinking water as a low-temperature source in 

district heating systems 
When electricity prices are low, the operation of electrically driven heat 

pumps, extracting energy from WDNs and transferring it to district heating 

systems, seems to be a perfect match. This is firstly because the heat provided 

from the WDN to the district heating system is potentially replacing less sus-

tainable sources of energy, such as fuels used in combined heat and power 
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plants. Secondly, it is because WDNs have stable temperatures and are availa-

ble in many places around the world. Finally, low drinking water temperatures 

may reduce the risk of biofilm growth (Liu et al., 2016) and increase the share 

of water complying with the recommended upper temperature limit of 12 ºC at 

the tap in Denmark (Ministry of Environment and Food of Denmark, 2018b). 

Real-case examples of heat pumps installed in WDNs already exist, as exem-

plified by a smaller utility in Northern Jutland, Denmark, supplying around 

15% of the annual required energy for district heating (Cronborg A/S, 2014). 

However, there is a potential socioeconomic downside: does the lower water 

temperature lead to more energy being required to heat the water at consumers’ 

homes? 

To analyse this effect, Paper V simulated the temperature throughout Copen-

hagen’s WDN and included the effect of eight heat pumps, deployed at favour-

able locations in the model on the WDN mains. Figure 11 exemplifies the link-

age between the WDN and a district heating system with a heat pump. The 

drinking water is cooled significantly at the heat pump location and, in this 

example, due to the soil being warmer than the water, some of the extracted 

energy is regained from the ground over time. Hereby, the water temperature 

slowly re-approaches the soil temperature downstream of the heat pump (Fig-

ure 11). 

Case studies exist in the literature that assess the benefits and consequences of 

heat pump installations in WDNs (Blokker et al., 2013; De Pasquale et al., 

2017; Paper V). However, owing to differing WDN characteristics (such as 

residence times) and differences in the temperature model setup (for example, 

whether a term describing the thermal resistance of the soil is included and 

whether soil temperatures were estimated or measured), results are not easily 

comparable and depend on the system setup.  

 
Figure 11. Linkage between a water distribution system and district heating system by a 

heat pump cooling the drinking water below soil temperature and transferring heat to the 

district heating system. 
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4.3.1 Case study: Greater Copenhagen Utility, Denmark 

The Hubeck-Graudal heat transfer model (Paper V) was validated against 

weekly sampled temperature measurements covering two years at 15 sampling 

locations. The simulated results showed a good match with the measurements. 

The case study assessed the effect of reducing the drinking water temperature 

by 5 ºC at eight favourable heat pump locations. The analysis revealed a total 

heat extraction potential of 29.2 MW for Copenhagen’s WDN. When including 

the work supplied by the heat pumps (35.9 MW), this amounts to around 2% 

of Copenhagen’s peak heat demand during January and is 50% higher than 

previously estimated by Bach et al. (2016). This large difference was mainly 

explained by not deploying heat pumps to reservoir locations only. The case 

study simulations revealed that 38% (11.1 MW) of the extracted heat will be 

returned by the soil (i.e. water that has been cooled through heat pumps will 

regain heat downstream). Moreover, 33% (9.6 MW) of the energy has, based 

on water demand assumptions (Rygaard et al., 2013), no effect on the district 

heating demand of consumers, resulting in a net heat potential of 20.7 MW 

from the source. In other words, a heat utilisation degree of 71% was computed 

for Copenhagen’s WDN.  

The coefficient of performance (COP) is a term describing the ratio between 

the amounts of energy provided and the work (i.e. electricity) required to run 

heat pumps. Usually, this value exceeds unity, showing that more heat is ex-

tracted than work required to run the heat pump. The COP ratio can be applied 

to heat pumps individually and to the entire system. When applied as system 

COP, the additional electricity and district heating demand required for heating 

at consumers’ homes, because of cooler water temperatures downstream of 

heat pumps, are taken into consideration. The application of a conservative 

heat pump COP of 2.9 resulted in a system COP of 1.7. This value described a 

relatively low ratio of heat provided over the total work required by the system, 

when compared to more generic integrations of heat pumps in district heating 

systems (having a system COP of up to 5 (e.g. Ommen et al., 2014)). Even a 

less conservative heat pump COP of 4 would only increase the system COP by 

up to 1.9. Thus, a more thorough (economic) analysis is required to assess 

whether heat pumps extracting energy from WDNs are more competitive when 

other solutions, including wastewater, seawater and fresh water sources, are 

not available (e.g. Elías-Maxil et al., 2014).  

The heat utilisation analysis of the WDN revealed that the thermal resistance 
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from pipe materials in general was insignificant compared to the thermal re-

sistance from the soil material. As the exact thermal conductivity of the soil 

was unknown, a sensitivity analysis was conducted modifying the parameter 

by ±30%. Whereas the analysis showed that the degree of heat utilisation of 

the soil changed by 11–15%, the overall degree of heat utilisation in this spe-

cific case study changed by only 2–4 percentage points. 

Even though the energy benefits were debatable, the application of heat pumps 

had a significant positive impact on the end-use temperature, as the share of 

water delivered to users complying with the upper limit of 12 ºC increased 

from 41% to 81% during August.  

In Paper V, the degree of heat utilisation of the soil increased from 34% to 38% 

when including the heat recovery occurring in service lines. This additional 

heat recovery was, however, based on scarce information about service lines, 

such as average service pipe lengths and diameters and limited demand infor-

mation stored in the utility’s hydraulic model. The application of smart meter 

temperature data in Paper IV showed that the water in service pipes can be 

stagnant or slow-flowing for long periods, indicating that the heat transfer in 

service lines may be underestimated significantly. Moreover, the applied WDN 

model in Paper V did not contain up-to-date demand patterns, nor did the model 

reflect seasonal demand variations. Smart meter data, as available in Paper IV, 

could be useful to improve the demand dynamics in the system and thus be 

used to validate the heat transfer model even further, such as during periods 

where the WDN model’s demand pattern very likely does not resemble the real 

demand in Copenhagen‘s WDN. 

In Paper V, the heat transfer model was a valuable tool for assessing the effect 

of installing heat pumps and cooling the water in a WDN. 

 Whereas a net potential of 20.7 MW can be extracted from Copenhagen’s 

WDN, the system COP was as low as 1.7, indicating that other sources of 

energy should be considered prior to heat pump deployment in Copenha-

gen’s WDN. 

 The share of water at consumers’ nodes complying with a statutory rec-

ommendation (< 12 ºC) increased from 41% to 81% during August when 

installing heat pumps, thus improving the quality of the distributed water. 

This indicated a clear benefit of heat pump deployment. 
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 Future investigations should incorporate additional information, such as 

smart meter temperature data, to further validate the temperature model 

and assess the effect of heat recovery occurring in service lines. 

4.4 Smart meter data as an add-on to urban 

drainage management 
In Copenhagen, at least 83% of the consumed drinking water is expected to 

end up in the urban drainage system (Rygaard et al., 2013). This highlights the 

potential of using and linking smart meter consumption data with urban drain-

age models to estimate, for example, wastewater flows and constituents, as 

mentioned in the literature (Cole and Stewart, 2013; Monks et al., 2019; 

Nguyen et al., 2018). Comparing these estimates with in-sewer flow observa-

tions may furthermore be used to estimate infiltration/exfiltration in the urban 

drainage system. In Paper VI, this potential was tested on a real case study. 

Smart meter consumption data was bundled according to the meters’ 

wastewater catchments (the ‘DMA-equivalent’ in urban drainage management) 

and compared to in-sewer observations from a combined sewer system. 

Hereby, the potential of using smart meter data to simulate the wastewater 

component of the dry weather flow in an urban drainage system was estab-

lished, and the methodology could furthermore be used as a data anomaly and 

system validation tool.  

4.4.1 Case study: Utility Elsinore, Denmark 

In Paper VI, data from five in-sewer sensors covering three monitoring periods 

without rain was available for testing. Figure 12 displays the concept behind 

the applied method in Paper VI, where in-sewer observations were available 

from five catchments. 

 
Figure 12. Linkage between a water distribution system with smart meters deployed and an 

urban drainage system consisting of five catchments. In-sewer sensors were installed down-

stream of these five catchments. Utility Elsinore, Denmark (Paper VI).  
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Moreover, data on the outflow from the waterworks and the inflow to 

wastewater treatment plants was available. Using this data, two approaches 

were tested: 

1 Summing the smart meter data, based on upstream catchments. 

2 Linking the smart meter data to an urban drainage model. 

The first approach, being a more simple process, did not include the routing 

time through the urban drainage system.  

Prior to the application, two typical problems related to digitalisation were 

identified. First, the evaluation of smart meter data from Utility Elsinore re-

vealed Type 0 anomalies (Figure 5). These included a missing sub-catchment 

belonging to catchment ‘EU’ (Figure 12) in the wastewater plans of the utility 

as well as consumers without smart meters (only accounting for < 2% of the 

demand in the analysed area). Second, a substantial effort was put into gaining 

access to data from the utility and its partners. The smart meter and in-sewer 

sensor data, the WDN model and the urban drainage system model were man-

aged by four individual contractors, and the wastewater treatment plant and 

waterworks data was obtained from various utility employees. 

The summed smart meter data was compared with outflow measurements from 

the utility’s waterworks. The results showed a waterworks outflow around 15% 

higher than the summed data in all three periods. This deficit might have been 

caused by, among other things, leakage, unknown consumers or sensor errors. 

Next, the wastewater treatment plant inflow was compared to the simulated 

inflow based on smart meters upstream of the five in-sewer sensors and addi-

tional catchments (Figure 12). Here, the simulated inflow was 50% higher than 

the observed one during two monitoring periods, but showed a high match dur-

ing the third monitoring period. The smart meter data, however, showed a high 

match with audit data prior to smart meter deployment and did not markedly 

change its dynamics over the three monitoring periods. Thus, the smart meter 

data was deemed more valid than wastewater treatment plant observations. 

Most likely, deviations were caused by erroneous sensors at the wastewater 

treatment plant or other factors, such as exfiltration, occurring in the urban 

drainage system. 

Looking at the five in-sewer observations only (Figure 12), the wastewater 

flow did not increase as expected in all downstream catchments, indicating 

possible exfiltration and infiltration of water into the urban drainage system, 

or in-sewer sensor errors. Moreover, residuals between observed and simulated 
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wastewater flow, varied greatly in all measuring periods and catchments, rang-

ing from around -20 L/s (observation < simulation) to 70 L/s (observation > 

simulation). Different sources of error were discussed extensively in Paper VI, 

including consumed water not discharged to the sewer system or construction 

dewatering unintentionally released to the urban drainage system; however, no 

consistent positive or negative trend was seen in the mass balances of the catch-

ments. It was thus concluded that the most likely reason for the observed dis-

crepancies was erroneous in-sewer sensors. For example, the measurements in 

the most downstream catchment were at times 25 L/s higher than simulated, 

being an unrealistic additional volume of water ending up in the wastewater 

treatment plant (where differences between smart meter simulation and ob-

served values were already too high). It is therefore believed that the degree of 

uncertainty of the in-sewer observations even exceeded expected uncertainties 

of up to 20%.  

For each monitoring period, summed and simulated smart meter data flows 

upstream of each in-sewer sensor increased the further downstream the in-

sewer sensors were placed (Figure 12). When compared with in-sewer obser-

vations (whose time dynamics are assumed trustworthy despite the uncertain 

flow magnitude), the included routing time by the simulated smart meter data 

showed a better timing of peaks and low points. This could be potentially use-

ful for estimating infiltration of water into the urban drainage system and when 

used in a real-time control setup.  

As the in-sewer observations were deemed the least trustworthy, the smart me-

ter data posed a more reliable source for estimating the dry weather flow in the 

urban drainage system, even though it only represents the wastewater compo-

nent. The case study showed that the application of smart meter data can also 

be used to highlight system anomalies, such as identifying unreliable data col-

lected in the urban drainage system. Owing to the high uncertainty in the ap-

plied datasets, independent data sources are needed to verify that the in-sewer 

observations are indeed erroneous and to further estimate the other dry weather 

flow components, such as exfiltration and infiltration. 

Thus, the application of smart meter data for comparison with in-sewer obser-

vations showed the following. 

 Coupling smart meter data with urban drainage models increases the un-

derstanding of urban drainage systems and can be used as a tool to identify 

anomalies, including erroneous in-sewer observations. 
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 Owing to the large deviations between simulated wastewater flow and in-

sewer observations, and because of various possible sources of error in the 

in-sewer data, smart meter data was deemed a more valid source for esti-

mating the dry weather flow in urban drainage systems. 

 Whereas linking the data from WDNs and urban drainage data was rela-

tively simple, the access to data and information was complicated by being 

distributed between four contractors and several employees internally in 

the utility, which is an obstacle for further digitalisation of the water sec-

tor.  
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5 Conclusions 

The water sector conceives digitalisation as a way to solve many of the chal-

lenges currently faced. Using six real-world case studies and data from five 

utilities, this thesis developed a range of novel methods to identify and address 

challenges and potentials for utilities to become increasingly data-driven.  

Being data-driven requires action within at least three fields: 1) data collection, 

2) data validation and reconstruction, and 3) application of the data. The inves-

tigated case studies revealed that these actions are highly interlinked and will 

enhance and complement each other. 

Data collection. One typical example of digitalisation is the enrolment of 

smart meters, a process familiar to all five case study utilities. The sampling 

resolution of smart meters can have a major impact on reaching different data-

driven goals. In terms of water loss assessment, commonly implemented sam-

pling resolutions of consumption data ranging between 1 and 24 hours proved 

to be sufficient if representative demand patterns are available and used to in-

terpolate in between adjacent data points. It is especially relevant to use such 

weighted demand-pattern-based approaches over linear interpolation for sam-

pling resolutions > 2 hours. When it comes to water age simulations, however, 

sampling resolutions finer than 1 hour are needed to increase the validity of the 

simulations significantly. Moreover, application of smart meter temperature 

data showed that this data was not sampled optimally in regards to using the 

data for analysing the temperatures in the WDN. Only a small fraction of the 

smart meter temperature data (< 0.2% over 2 weeks) represented WDN and 

soil temperatures, which were essential inputs to simulate the temperatures in 

WDNs. Thus, additional sampling points or a finer sampling resolution than 

available in the case study utility (< 30 minutes) is likely needed. 

Data validation and reconstruction. The case studies highlighted the need 

for an increased focus on data validation. This PhD project developed a sys-

tematic approach by categorizing anomaly types into four groups. Type 0 

anomalies described ‘static’ data, representing missing and incorrect system 

attributes (e.g. wrong pipe diameters or consumer affiliations). Type 1 and 2 

anomalies described sensor data that did not reflect the real state (e.g. illegiti-

mate data) and misrepresented the actual state (e.g. drifted data from a miscal-

ibrated sensor) of the WDN, respectively. Type 3 anomalies were used to clas-

sify abnormal measurements representing actual events (e.g. bursts) in the 

WDN.  
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The project implemented seven validation tests to identify Type 1 and 2 anom-

alies. Application of these tests revealed that many errors prevailed for long 

periods, with 3–35% invalidated and 10% missing data in the data sets from 

three utilities. Running such tests in an operational setting as well as analysing 

similarities in the occurrence of anomalies may help identify major flaws in 

the data collection schemes and help utilities to react in a fast manner, reducing 

the overall number of anomalies in the utilities’ data sets.  

High numbers of missing and invalidated data points also lead to a need for 

reconstruction processes. The thesis demonstrated data reconstruction based 

on artificial neural networks. Reconstructed consistent data streams can serve 

as an important input in, for example, online models. The reconstructed data 

can also help to identify Type 3 anomalies.  

Application. In the literature, numerous studies highlight many potential data-

driven applications of WDN analyses, but their success depends on the quality 

of the data. In this PhD thesis, the utilisation of real-world sensor data and 

application of advanced methods were particularly useful in highlighting Type 

0 anomalies, i.e. flawed registrations in the utilities’ asset databases. A large 

number of Type 0 anomalies limits the success of more advanced analyses. 

A novel approach combined WDN temperature data, temperature simulations 

and a hydraulic WDN model, with the intention of identifying valves with un-

known status. However, the analysis led to identification of errors in the util-

ity’s asset and sensor data instead, ultimately casting doubt on the validity of 

the hydraulic model. The combined temperature and hydraulic modelling thus 

turned out to have another benefit than originally intended. Moreover, WDN 

temperature data proved to have a clear value for the case study utility, as it 

indicated the water’s origin and path taken in the WDN, which is otherwise not 

easily understood from pressure and flow data alone. 

A low number of WDN temperature measurements can be overcome by using 

smart meter temperature data, which is potentially available from each house-

hold. In another case study, comparing smart meter temperatures with simu-

lated temperature values throughout a DMA highlighted the applicability of 

the data to represent WDN temperatures (mean RMSE of 0.9 ºC). Well-sam-

pled data and detailed WDN models having distinct nodes for all consumers 

may provide temperature simulations suitable for leakage localisation or valve 

status identification. 
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Another use of a WDN temperature model was identified by analysing the ef-

fect of eight heat pumps deployed in Copenhagen between the drinking water 

and district heating systems. The analysis revealed a positive net heat extrac-

tion potential of 21 MW; this may be an important supplement, especially dur-

ing peak heat demands. In addition, the analysis revealed that the installation 

of heat pumps may improve summer water temperatures markedly by increas-

ing the share of consumers receiving water under 12 ºC from 41% to 81% dur-

ing the month of August. 

In another case study, smart meter data from the WDN was coupled with an 

urban drainage model. Access to the data was complicated by being distributed 

between different contractors and staff members, representing a typical obsta-

cle of digitalisation. Large deviations were observed between simulated 

wastewater flows and the in-sewer observations, and the smart meter data was 

deemed as a more valid source for estimating the dry weather flow in urban 

drainage systems.  

This thesis revealed that there is a great potential hidden in the often unused 

data from water distribution systems. For example, it was demonstrated that 

smart meter data, and in particular temperature data (which is often overseen 

in optimisation and modelling tasks), add great value to the understanding and 

management of water distribution systems and beyond. Another important out-

come of this thesis is the realization that it may be more challenging for utilities 

than expected to become increasingly data-driven. This is, among other things, 

because too many errors and uncertainties still exist in the utilities’ asset data-

bases and sensor data. In the years to come, utilities, technology providers and 

researchers need to collaborate to identify and reduce these uncertainties; 

thereby allowing the water sector to reach higher levels of digital maturity.  
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6 Perspective 

The application of real-world data revealed various potentials, but also chal-

lenges that need to be addressed by utilities, researchers and technology pro-

viders, before utilities may become more data-driven. 

Digitalised utilities. Even though the case study utilities have invested in mon-

itoring capabilities in the form of SCADA systems and have started full smart 

meter rollouts, the use of the collected data is very limited. Many reasons may 

exist for this, including limited resources for analyses, missing analytical tools, 

or lack of funding for managing data and devices. This limited usage also 

means that utilities do not know the actual quality of their data. However, this 

thesis revealed that a generally low data reliability was a major issue in all case 

study utilities. Until reliability is improved, this will limit the potential of data-

driven applications. I suspect that if utilities want to climb from ‘basic’ or ‘op-

portunistic’ digital adaptation to ‘systematic’ and later become ‘transforma-

tional’ (Figure 2), the following three steps are of importance.  

1 High-quality asset data and a thorough system understanding need to be es-

tablished. For example, are pipes, valves and consumers located as stated in 

the utility’s database? To the best of my knowledge, fully automated proce-

dures for identifying such discrepancies are missing, but the application and 

model-aided evaluation of data is a first step to identifying and reducing 

such errors. 

2 It is of paramount importance to secure a high data reliability. Otherwise, 

there might be no reason for deploying additional sensors. Applications de-

pending on the data may run flawlessly in the beginning, but the number of 

errors normally increases over time owing to limited resources for re-cali-

brating sensors and keeping system changes up-to-date in databases. Thus, 

utilities need to allocate resources for a proper validation to maintain a high 

reliability of the data, and the use of data validation tools should be part of 

the daily tasks in a utility.  

3 When the reliability of the data is assured and the number of major system 

anomalies is reduced, utilities need to increase their usage of the data. This 

usage will likely highlight additional minor ‘system anomalies’ and improve 

the understanding of the system. This process is expected to result in further 

improvements in data collection and reliability. This will also require in-

volvement from the research community and technology providers, who 
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should help utilities to identify and provide optimal data collection possibil-

ities and analytical tools as well as demonstrate the application of these in 

real-world case studies.  

Research opportunities. Use of temperature data and simulation of the tem-

perature throughout the WDN revealed various benefits. To further highlight 

the true potential of the temperature simulations for valve status identification, 

additional studies need to be conducted. These include in-depth sensitivity 

analyses discussing when the method can be applied successfully and when not 

(for example, identifying which temperature gradients are needed throughout 

the WDN). Moreover, the applied genetic algorithm and temperature modelling 

software (EPANET-MSX) turned out to have limitations in terms of speed and 

convergence success at the applied fine sampling resolutions and are therefore 

currently not suitable for daily operations; thus, there is a demand for addi-

tional research in computational optimisation. 

The true value of using smart meter temperature data was inhibited by how the 

data was sampled and categorized. Whereas the sampling resolution could be 

increased by the technology provider, additional procedures for categorizing 

the temperature data into soil and WDN temperatures will be useful. Owing to 

the uncertain nature of service line data, approaches that are independent of the 

physical properties of service lines should be investigated. These include, for 

example, unsupervised clustering algorithms, identifying smart meter data that 

represent soil and WDN temperatures. Next, it should be investigated to what 

extent the data can be used for more advanced methods such as valve status 

detection or leakage localisation. Smart meter temperature data could also be 

used to improve the knowledge of utilities about heat recovery in service lines. 

If there is indeed a higher recovery potential, the benefit of heat pumps de-

ployed in WDNs may be greater than estimated here.   
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8 Appendix 

A Scopus search query 
For hits related to publications that cover digitalisation in the water sector, the 

following query was used on https://www.scopus.com:  

TITLE-ABS-KEY(("digitalisation" OR "digitalization" OR "digital transfor-

mation" OR "data-driven" OR "digital water" OR "water 4.0" OR "internet of 

water" OR "smart water" OR "intelligent meter" OR "smart meter") AND "wa-

ter") AND (EXCLUDE(SUBJAREA,"MEDI" ) OR EXCLUDE ( SUB-

JAREA,"IMMU") OR  EXCLUDE(SUBJAREA,"HEAL" ) OR EX-

CLUDE(SUBJAREA,"PSYC") OR EXCLUDE(SUBJAREA, "PHAR") OR 

EXCLUDE(SUBJAREA, "NURS") OR EXCLUDE(SUBJAREA, "VETE") 

OR EXCLUDE(SUBJAREA, "DENT") OR EXCLUDE(SUBJAREA, 

"ARTS") OR EXCLUDE(SUBJAREA, "NEUR"))   

To account for general water-related publications, ("digitalisation" OR "digi-

talization" OR "digital transformation" OR "data-driven" OR "digital water" 

OR "water 4.0" OR "internet of water" OR "smart water" OR "intelligent me-

ter" OR "smart meter") was removed from the upper query. The hit ratio was 

then computed between both outputs. 

B Data reconstruction 
During anomaly testing of the raw data in Paper II, missing data periods were 

identified and dubious observations flagged; however, most post-applications 

of the collected meter data will benefit from a continuous and flawless input 

data stream. Missing and flagged data points (as well as valid data points for 

visualization purposes) were reconstructed based on estimates from feed-for-

ward artificial neural networks (ANNs) (Tan et al., 2006). The ANN models 

were trained based on the resilient back-propagation algorithm with weight 

backtracking (Riedmiller and Braun, 1994)1. To reconstruct meter observa-

tions, it was decided to construct simple ANNs that consisted of a maximum 

of 10 input neurons, 1 hidden layer including a maximum of 10 hidden neurons, 

and 1 output neuron. The hourly observations of a meter were predicted based 

on an ANN model that was trained on the hourly or specific lagged hourly 

                                              

1 Riedmiller, M., Braun, H., 1994. A direct adaptive method for faster backpropagation 

learning: the RPROP algorithm, in: IEEE International Conference on Neural Networks. 

IEEE, pp. 586–591. doi:10.1109/ICNN.1993.298623 
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values from other meters in a utilities network. The selection of other meters 

favoured highly correlated data sets. To ensure uniform time intervals, the data 

was aggregated to hourly data similar to test VII (see Paper II). Only pre-vali-

dated data of tests I–VII were used for creating the hourly averages. This im-

proved the reliability of the model results, as neural networks are sensitive to 

the presence of noise in the training data (Tan et al., 2006). 

Applied training of artificial neural networks 

ANNs comprise three types of layer: one input, multiple hidden and one output 

layer. Neurons connect the different layers by specific weights and an activa-

tion function, which in our case is the hyperbolic tangent function (tanh):  

tanh(𝑧) =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧
 , (1) 

where z represents a linear combination of weighted inputs from neurons. The 

complete selection process of input and hidden neurons and training of ANN 

models for a meter data set is summarized in the following four steps (Figure 

B-1): 

 
Figure B-1. Daily meter data reconstruction process based on artificial neural network mod-

els. 

 

1 A meter data set was selected for reconstruction. As utilities may change 

their network set-up frequently, significant changes may be observed in the 

statistical properties of pressure and flow time series. Therefore, each daily 

model is only trained on the available data sets of the previous 60 days. 

Thus, a test day and the previous 60 days were used as test and training 

periods, respectively. If more than one third of the data was missing from 

the test meter in the training period, the test day was skipped for data recon-

struction. 

2 The correlation between the meter to be reconstructed and all available data 

sets was computed based on the training period. The five meter data sets 

with the highest absolute correlation were selected as ANN model input 

units. Also, the hourly lags 1, 2, 6, 12 and 24 of the most correlating meter 
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data set were included as input neurons. The response variable itself was not 

used as an input variable; this was done to overcome issues that may arise 

when only the analytical redundancy of the meter is used for model building. 

For example, time series models based on one meter might fail to predict 

measurements correctly that include sudden network operations (e.g. 

Quevedo et al., 2010). 

3 For each set of input units, the number of neurons in the hidden layer was 

determined by 10-fold cross validation (CV) (Tan et al., 2006) applied on 

the training data set to avoid model overfitting. In short, the training set was 

divided into 10 partitions, where one partition was equal to the ‘CV test set’ 

in each fold. An ANN model was trained on the remaining nine parts and 

the sum of squared error between the model prediction and each ‘CV test 

set’ was computed. This procedure was repeated ten times. The number of 

neurons having the lowest mean squared sum of errors was selected for 

model training in the next step.  

4 Having determined a final number of input units and number of neurons in 

the hidden layer, the model setup was trained on the entire training set avail-

able. The test period was then applied to the model(s) and the daily data was 

reconstructed. 

Several conditions could occur that require the training of additional models 

or the discarding of model training and thus data reconstruction. Relating to 

step 2 of the ANN construction process illustrated in Figure B-1, the following 

conditions had to be met regarding the training and testing of data sets with 

missing data: 

 If any input unit in combination with the reference meter had more than one 

third missing data in the training period, the input unit was excluded and 

another, based on its correlation with the reference meter, was selected.  

 If the set of input units had more than one third missing timestamps in the 

training period, the input unit with the most missing timestamps was re-

moved and a new input unit, based on its correlation with the reference 

meter, was selected. 

 If an input unit had one or multiple missing timestamps in the training 

and/or test data set, additional input-unit sets and thus models covering 

these timestamps had to be constructed. The input units not covering the 

period were excluded from the new models. 
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 If no input-unit set could be determined that met all of the above-stated 

criteria for certain timestamps, the number of most correlating variables and 

hence input units was reduced by one. In this case, the entire procedure of 

step two was repeated until it is possible to reconstruct all timestamps. If it 

was not possible to find a set of input units, selected timestamps were 

skipped for reconstruction.  
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Abstract Water usage data collected from smart meters at the end user can improve the accuracy and 

applicability of water distribution network models. Collecting and storing large amounts of data 

across hundreds or more smart meters is costly which makes it important to consider what makes a 

sufficient sampling resolution. This paper explores the effect of data sampling resolution in smart 

meter data on model performance in regard to flow, pressure and water age. Furthermore, the paper 

investigates the effect of using either linear interpolation or demand patterns to fill gaps when data is 

sampled coarsely. The study was based on real data from 526 smart meters in a district metered area 

in Denmark. The results showed that smart meter data can greatly improve modelling results, and if 

the temporal data resolution is coarser than 2 hours, then demand pattern based gap filling should be 

used. Furthermore, the study showed that a reduction in sampling resolution from 24 to 6 hours is of 

small benefit compared to refining the resolution even further. 

1 Introduction 

In recent years, utilities around the world have installed smart (water) meters at an increasing rate. 

This implementation entails a wide range of benefits for utilities and customers, including reduced 

operational costs, enhanced demand management, efficient pipe network infrastructure planning, 

accurate billing, improved leakage detection and higher customer satisfaction (Stewart et al. 2018; 

Monks et al. 2019). In model based water distribution systems analysis, the quantity and quality of 

the available data is often one of the most restraining factors (Savic et al. 2009) and the expected 

widespread use of smart meter data has the potential to improve the applicability and accuracy of the 

models (Gurung et al. 2014, 2016).  

The sampling resolution, or sampling rate, of the data describes the temporal distance between a 

device’s water meter readings (WMRs) and has a major influence on the usefulness of the data. 

Cominola et al. (2018) showed that a fine sampling resolution (ranging from minutes to seconds) 

increased significantly the accuracy of end-use disaggregation. Furthermore, they showed that the 

magnitude and timing of the peak demand can vary up to 62% and more than 15 hours, respectively, 

when changing the sampling resolutions from 10 s to one day. Also, Gurung et al. (2014) showed 

how enhanced demand patterns could be generated based on a very fine sampling resolution (5 s) in 

smart meter data sets, reducing measured peak demand levels and updating the time of peak 

occurrence. This is crucial information, as demand patterns and associated peaks are used to design 

and optimise water distribution systems (Gurung et al. 2014; Cominola et al. 2018). In terms of water 

quality modelling, Blokker et al. (2008) showed that the spatial aggregation and sampling resolution 

mailto:jkir@env.dtu.dk
mailto:mryg@env.dtu.dk
mailto:morb@env.dtu.dk
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play a significant role. For larger transportation networks water quality models including advection-

reactions can be sufficient at 1 hr sampling resolutions; but at finer spatial aggregations, water quality 

models should also include dispersion reactions, with sampling resolutions at least below 5 min. This 

should be done, for example, when simulating water age in parts of the networks where laminar flows 

occur (Blokker et al., 2010). However, in Blokker et al. (2011), a hydraulic modelling time step of 15 

min was determined to be sufficient for accurate residence time computations using a bottom-up 

demand allocation approach (i.e. unique demand patterns for each household). Creaco et al. (2017) 

showed that when using the conventional top-down approach (i.e. allocating strongly correlated 

demand patterns to nodes) pressure head simulations require larger time steps (here, ≥ 1 hour) before 

being deemed reliable. Also, Creaco et al. (2017) showed that the bottom-up approach combined with 

extended period simulations are capable of generating accurate pressure and flow simulations at time 

steps larger than 2 min.  

Even though case studies have shown the benefits of finer sampling resolutions, the increased data 

volumes, originating from implementing advanced metering infrastructure, also pose challenges for 

utilities. One example includes data management, as utilities may struggle with identifying the best 

type and frequencies of data needed for tasks related to operation and planning of water distribution 

systems (Boyle et al. 2013). With a finer sampling resolution, the required data storage per installed 

meter grows, and there is an important trade-off between sampling resolution and battery life of 

battery-driven smart meters. One possible solution to mitigate the latter challenges is the emergence 

of low power wide-area networks (Stewart et al. 2018) that reduce the required energy during 

transmission, but at the cost of coverage/range, payload length (bytes per message) and maximum 

number of messages send per day per device (Mekki et al. 2019). Common for most large-scale 

rollouts of smart meters is that the smart meters use their own transmission channels with more focus 

on energy efficiency than reliability, as opposed to traditional system sensors connected to the 

SCADA system. This makes smart meter data conceptually different from other types of data from 

water distribution systems. Where data from traditional sensors are transmitted and stored at regular 

configured intervals, the smart meter readings can arrive at more irregular intervals depending on the 

system setup.  

Our study aims to provide information that support utilities in selecting the sampling resolution best 

suited for their needs. This is done by resampling collected fine-resolution smart meter data to coarser 

resolutions and investigate its impact on modelling results. We also investigate how different 

approaches to fill data gaps in data sets with random or uniformly sampled time step intervals affect 

hydraulic simulation. This is done by comparing gap filling by linear interpolation with interpolation 

based on expected demand pattern data. We compare simulation results of water consumption, 

pressure head and water age based on data set scenarios with varying sampling resolution and gap 

filling methods with a reference simulation based on the finest sampling resolution available. 

2 Methodology 

The impact of sampling methods and sampling resolutions on total district metered area (DMA) 

consumption, pressure head and water age simulations were assessed for a number of data scenarios 
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(Table 1). The DMA consumption represents the summed water usage of all users in the DMA over 

time. 

Table 1. Various data set scenarios applied to water distribution network simulation. 

Sampling resolution [hr] Finest available; 0.5; 1; 2; 3; 4; 6; 12; 24   

Sampling method Uniform; random  

Gap filling methods Linear interpolation; demand pattern 

Data basis (for demand pattern generation) Full; as sampling resolution 

 

Sampling resolution 

The total sampling resolution for the entire data set of Ndevices smart meters is calculated as: 

sampling resolution =
Covered sampling period * 𝑁𝑑𝑒𝑣𝑖𝑐𝑒𝑠

∑ 𝑛( 𝑖)
𝑁𝑑𝑒𝑣𝑖𝑐𝑒𝑠

i = 1

 
(1) 

where n(i) is the number of WMRs for the i-th device. The calculated sampling resolution defines the 

average temporal distance between WMRs in the data set.  

 

Sampling method 

The sampling interval between a device’s individual WMRs can be uniform (e.g. every full hour) or 

pseudorandom for similar sampling resolutions. Pseudorandom data may occur when data transfer 

depends on water consumption triggering the transmission of messages, unstable connections to data 

collection devices, or similar. Scenarios with pseudorandom sampling intervals were created by 

deleting data points at random from the raw data set, until the required sampling resolution according 

to (1) was achieved. Scenarios with uniform sampling intervals required the generation of WMR 

sampling points at uniform time step intervals. Uniform intervals were generated by linear 

interpolation of gaps between WMRs in the raw data set.  

Gap filling method 

The WMRs come in irregular time intervals and need to be aligned for hydraulic simulations. We ran 

simulations at a resolution of 5 minutes in order to compare the model results with the DMA inflow 

observations and not to loose too much information in periods with small temporal distances between 

WMRs. Therefore, the WMR data need to be resampled at 5 min resolution which implies estimating 

values in between the sometimes much coarser WMR data. In the following this process is called gap 

filling. Gaps were filled either by distributing the consumption in-between two WMR readings 

according to a representative demand pattern or by linear interpolation between the same WMR data. 

Figure 1a shows an example 24-hour demand pattern used to fill gaps between four random WMRs 

with accumulated volume readings from a smart meter (Figure 1b). Even though the total 

consumption over the shown period was the same, both estimation methods resulted in different flow 

rates (Figure 1c).  

Demand pattern generation 

Demand patterns for the total consumption in the DMA were generated based on the available WMRs 

of all smart meters in a given period that was independent of the period used for model simulation. 

First, all WMRs were linearly interpolated to the nearest uniform timestamp t (with an interval of 5 

min). Next, the mean consumption of all consumers �̅�𝑡, for each time step t available on a working 
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day and a weekend day was computed, respectively. The demand patterns for a working day and 

weekend day were then found by: 

Demand muliplier(t)  =
�̅�𝑡 ∗ 𝑛(�̅�𝑡)

∑ �̅�𝑡
timestamps

t = 1
 
 

(2) 

where 𝑛(�̅�𝑡) is the total number of time steps per 24 hours (each day = 288 time steps). 

 

Data basis for demand pattern generation 

The data basis describes whether the period used for generating the demand patterns was using the 

finest sampling resolution available (termed ‘full’ availability) or whether the data to generate 

demand patterns was equal to the applied sampling resolution scenario listed in Table 1.  

Error assessment 

The root mean square error (RMSE) was computed for 1) the difference between measured inflow to 

the DMA and total water consumption of various data set scenarios (Table 1) and 2) between results 

of pressure head and water age simulations (only at nodes with consumers assigned) of a reference 

model and the models based on the varying data set scenarios. The reference model was based on the 

finest sampling resolution available, and linear interpolation was used as data gap filling method to 

generate uniform time steps. 

Standard model  

A ‘standard model’ and its simulation results were included, representing today’s best practise. In 

this model, consumers were assigned a demand average based on, e.g., quarterly meter readings, in 

combination with a demand pattern derived for the given type of consumer.  

 
Figure 1. A demand pattern (a) or linear interpolation are used to fill data gaps between a smart meter’s 

accumulated volume measurements (b), resulting in different flow rates over time (c). 
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3 Case study 

The methodology was applied to smart meter data collected in a DMA in Brønderslev, Denmark 

(Table 2).  

Table 2. Information about a district metering area and the hydraulic network in Brønderslev, Denmark. WMR 

= Water meter reading. 

Smart meters Total WMRs 

(01st-15th 08/18 and  

01st-15th 01/19) 

Sampling resolution [min] 

(01st-15th 08/18 and  

01st-15th 01/19) 

Network junctions  

(with smart meter 

assigned) 

Network pipes 

(average length [m])  

526 368,840/412,016 29/26 128 (103) 133 (72) 

All of the installed smart meters are of type Diehl’s water meter, HYDRUS, based on ultrasonic 

technology (Diehl Stiftung & Co. KG 2019). The analysed data included accumulated volume 

readings and respective timestamps. The meters transmit WMRs every 20 s to a system of antenna 

towers that collects data from the surrounding smart meters and transmit the WMR closest to the 

nearest full hour to the utility. If more than one tower picks up a signal from a given meter within an 

hour, a record from each of these towers will be stored in the utility’s database. This implies that the 

sampling frequency can seem rather irregular or random (Figure 2).  

Demand patterns were generated based on data from the period 1st to 15th August 2018 (Table 2). All 

remaining analyses were performed using data from the period between 1st and 15th of January 2019. 

All hydraulic simulations were run in EPANET (Rossman 2000). The hydraulic model consists of 

133 pipes and 128 nodes and smart meter data were assigned to the nearest node, averaging 4 smart 

meters per network node. Measured pressure with a sampling interval of 5 min at the single inlet to 

the DMA was used as boundary condition, and the model was accordingly ran in 5-minute time steps. 

The raw WMR data set (Table 2) represents the reference case resolution with average sampling 

intervals of 29 and 26 min/sample/device during 2018 and 2019, respectively. Simulation results 

based on the first 84 hours were not included when computing the RMSE to avoid impact from the 

initial water age conditions in the model. 

In the standard model, the averaged demand of each consumer, based on the difference between the 

first and last available WMR in the analysed period, was assigned to the associated nodes in the 

  

Figure 2. Distribution of the minute of the hour for all water meter readings (a) and the distribution of temporal 

distances between adjacent samples for individual meters (b). 
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model. Furthermore, the finest demand pattern generated from the 2018 data set was linked to this 

model. 

4 Results 

Demand patterns 

The generated demand patterns for a weekend and a working day in August 2018 are shown in Figure 

3. Unsurprisingly, the level of detail of the demand patterns decreases gradually with a coarser 

sampling resolution. In general, a decreasing peak demand and changes in the timing of the peaks 

appear in connection with a coarser sampling resolution. The demand patterns show less variation for 

sampling resolutions of > 6 hours and do no longer clearly follow the daily pattern of the finest 

sampling resolution. The uniform sampling method results in discretized demand multipliers (Figure 

3b and Figure 3d). For example, a uniform sampling resolution of 12 hours, starting at 00:00 hrs, only 

includes two WMRs per day per device which makes it difficult to assess the water consumption 

behaviour. 

Measured vs. simulated consumption 

Figure 4 illustrates how the total water consumption varies for the different data set scenarios (Table 

1) in comparison to the measured flow into the DMA over two selected days. At the finest sampling 

resolution, the total consumption resembles the measured inflow into the DMA to a high degree. 

Thus, it can be assumed that the amount of unaccounted water consumption is negligible in this DMA. 

Furthermore, it is evident from the Figures 3 and 4 that the choice of gap filling method makes only 

little difference when the sampling resolution is 1 hour or less. At coarser resolutions, however, the 

demand pattern based gap filling outperforms linear interpolation. By comparing the demand pattern 

lines on Figure 5, it is evident that the gap filling works best when based on fine resolution data (i.e. 

‘full data set of 2018’) – which especially is the case when the sampling resolution is coarse.  

Figure 5 clarifies that the use of a good demand pattern resulted in a simulated total consumption 

closer to the measured inflow than when using linear interpolation at a sampling resolution coarser 

than 1 hour. However, when the sampling method was uniform and the information to generate 

demand patterns was equal to the sampling interval, the difference between linear interpolation and 

  

   
Figure 3. Generated DMA demand patterns, based on varying sampling methods and resolutions during 01st 

– 15th of August 2018. 
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demand pattern gap filling is no longer visible (Figure 5b). The standard model outperformed linear 

interpolation at sampling resolutions coarser than 2 hours. At a sampling resolution coarser or equal 

to 12 hours, the standard model achieved results comparable to using demand pattern gap filling based 

on the full data set. For all gap filling methods the modelling results continue to improve as the 

resolutions become finer.  

  
Figure 4. Example of simulated total consumption over two days in 2019 in DMA with varying sampling 

resolution, sampling methods and gap filling methods. For smooth illustration, a rolling mean window of 1 

hour was applied to the data set. DA = data availability; GF = gap filling. 

 

 

Figure 5. Root mean square error (RMSE) between measured inflow in DMA and accumulated demand in 

water distribution network simulations at various sampling resolutions and gap filling methods. The standard 

model represents a top-down approach where the same demand pattern was assigned to each node based on 

the consumption over 5 months. 
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Simulation of pressure head and water age 

The average pressure head loss between the inlet and network nodes with smart meters is 0.16 m in 

the reference model. This low head loss is due to over-dimensioned pipes, owing fire safety 

regulations, which is typical for Danish water distribution networks. Consequently, also the average 

RMSE of change in pressure over a coarser sampling resolution is low (Figure 6a–b) and reaches 

mean RMSE values of only approximately 0.15 m at the coarsest sampling resolution of 24 hours. 

However, Figure 6 still illustrates differences in sampling methods and sampling resolutions. For 

sampling resolutions coarser than ~ 2 hours the gap filling methods have a large impact on the results, 

with clearly the best results achieved when using demand pattern based gap filling with a demand 

pattern based on the finest resolution available from 2018. However, when the available information 

to generate demand patterns is reduced, also the difference between linear interpolation and demand 

pattern gap filling decreases (Figure 6b). The standard model resulted in better pressure results than 

linear interpolation at sampling resolutions coarser than 4 hours, as well as to comparable results as 

demand pattern gap filling based on the full data set for sampling resolutions of around 12 hours or 

more. 

 
Figure 6. Mean root mean square error (RMSE) of pressure head (a–b) and water age (c–d) simulations with 

varying sampling methods and sampling resolutions based on all nodes with smart meters installed. 

The average water age in the reference model was 17.7 hours. Depending on sampling resolution and 

method the average RMSE varied between 0 and 4 hours (Figure 6c–d). The choice of gap filling 

method had smaller impact on the water age than on pressure and flow, which especially is noticeable 

for sampling resolutions of 4 hours or less. This can be explained by the fact that the age of the water 

is a result of many hours of consumption so the age is less dependent on short term variations. As 

seen with the pressure head change, the demand pattern based gap filling still resulted in better overall 

results, however. Moreover, the water age simulations performed better with uniform sampling. This 

can be explained by the fact that the random sampling method can have smart meters without any or 

only few WMRs, whereas the uniform sampling method still required data from all meters at a given 

sampling resolution. Thus, if certain areas in the network had no WMRs for long periods in the 

random sampling method, the error in water quality simulation at these locations increased. The 

greatest difference between finer sampling resolutions and the standard model were seen in the water 

age simulations (Figure 6d). Demand pattern gap filling outperformed the standard model at all 

sampling resolutions and only at a sampling resolution of 24 hours the standard model was better than 

linear interpolation. This shows that smart meter data improve significantly water quality simulations, 
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while there is little difference in pressure and total demand simulations when using sampling 

resolutions greater or equal to four hours. 

5 Conclusions 

By using household smart meter data to specify consumers demand in a water distribution model and 

by varying the data sampling resolution of the smart meter data we found that: 

 If there is a limit under which a finer resolution will not improve modelling results any further, 

then it is below 30 minutes.  

 There is not much difference between a 6 hour and 24 hour resolution – the biggest 

improvements occur when the resolution becomes finer than 6 hours.  

 It is much better to use representative demand patterns than linear interpolation to fill gaps 

between observations. A data resolution of 4 hours led to comparable or worse results in terms 

of pressure and flow than 24 hour data with the demand pattern based gap filling method.  

 Water age simulations improve greatly by the use of smart meter data almost regardless of 

how the data is treated, while simulations of flow and pressure are affected more by choice in 

gap filling method. 

Overall, it can be concluded that smart meter data can greatly improve modelling results, and if the 

temporal data resolution is coarser than 2 hours, then demand pattern based gap filling should be 

used.  
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ABSTRACT
We propose a method for quality assurance of raw data from water distribution networks in near real-time.
Well-known and novel data analysis methods, including a timestamp drift test, are combined to produce
a malfunction indicator database for diagnosing anomalies within data acquisition practices. The method
was applied to 112 flow and 111 pressure data sets, covering on average 32months, located throughout the
distribution networks of three Danish utilities. Around 10% of measurements in the utilities’meter data sets
were absent and 3–35% were categorized as dubious or erroneous. The most common types of anomalies
for flow and pressure data were flatline and time stamp inconsistencies. Time drifts were identified in all
three utilities and a similarity analysis revealed a simultaneous occurrence of many anomalies. These high
rates could have been avoided if the proposed method had been implemented to automatically highlight
meter errors and system-wide problems in data collection.
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1. Introduction

Erroneousmeter data fromwater distribution networks can lead to
incorrect conclusions during data fusion and data analysis in the
water supply sector. Reliable data is a fundamental prerequisite for
leakage detection, water quality monitoring, hydraulic modelling
and network optimization. To secure a high data integrity it is
therefore essential to validate the collected data (Quevedo et al.
2017) and to maintain high data accuracy and data reliability, as
promoted by the International Water Association (IWA) (Alegre
et al. 2006). This is of growing importance, as utilities are drawing
inferences at an increasing rate from data-driven applications and
the collected data itself as sensors and data transmission become
cheaper. Combining all data sources can be used proactively to
improve network operations in a utility (Machell et al. 2014).
Andrews et al. (2017) found that it is common for many utilities
to struggle with the validation of their own data. However, they
also found that, once validated, the data builds the foundation for
advanced applications, such as a successful water loss control
program. Data validation and anomaly detection methods are
not new to urban water engineering. Examples include rainfall
data (Jørgensen et al. 1998; Estévez, Gavilán, and Giráldez 2011),
urban hydrology (Mourad and Bertrand-Krajewski 2002;
Branisavljević, Kapelan, and Prodanović 2011), wastewater treat-
ment (Rosen, Röttorp, and Jeppsson 2003; Puig et al. 2008) and the
collection of data on water quality (García et al. 2017) and flow
(Quevedo et al. 2010; Cugueró-Escofet et al. 2016) in water dis-
tribution networks. Typically, validation and anomaly detection are
performed in a combination of ‘low-level’ methods, based on
simple heuristics and limited statistical knowledge, and ‘high-
level’ model-based approaches. High-level approaches use the
spatial and temporal redundancy in the available data sets to

flag suspicious and erroneous data (Quevedo et al. 2017). Even
thoughdata validationdoes not represent a new researchfield, it is
still not a priority issue at many water supply utilities. Whereas
largerDanishwater utilities arebenchmarkedonanannual basis to
compare their performance in terms of operational costs, unregis-
tered water losses, etc. (DANVA 2016), no comparison or bench-
mark exists in their data acquisition andmanagement practices. In
the American Water Works Association’s Free Water Audit
Software (WLCC 2014) utility practices are graded; the software,
however, does not focus on anomalies in raw meter data. In this
paper, we make a call for a renewed interest in data quality and
improved management of errors in logged data.

Defining dubious data points as outliers (in this paper
referred to as anomalies) is a subjective concept, as classifica-
tion varies among practitioners, researchers and the applied
methodologies (Helsel and Hirsch 2002; Rosen, Röttorp, and
Jeppsson 2003; Branisavljević, Kapelan, and Prodanović 2011).
The cause for erroneous or abnormal data is a combination of
many factors, such as meter malfunctions, problems occurring
in the data transmission and storage processes, changes in
network system operations or burst pipes (Loureiro et al. 2016;
Quevedo et al. 2017). We suggest dividing anomalous data
into three categories:

● Type 1: Anomalies caused by faults internally in the meter,
during transmission, storage, etc. that cannot be due to any
state of the water distribution network (illegitimate data).

● Type 2: Measurements that affect the data quality
negatively but have some valuable information left;
examples include a loss of sensitivity and miscalibra-
tion of sensors.
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● Type 3: Abnormal measurements that are caused by
actual events appearing in the network, such as leakage,
irregular consumption or valve opening.

Type 1 contains data with no relevance for the operation of the
system, because the integrity of the data is damaged or miss-
ing. This type of anomaly has also been described as ‘dirty data’
(Mounce, Boxall, and Machell 2010; Machell et al. 2014).
Examples include missing or illegitimate observations, flatline
segments, erroneous timestamps or duplicates. Applying time
series data that includes type 1 data in hydraulic, leakage or
water quality models can lead to incorrect conclusions. Since
type 1 data contains no valuable information, it is preferable to
remove type 1 anomalies from the time series before further
analyses are made. Compared to type 1, anomalies of types 2
and 3 have a higher level of information and the major differ-
ence lies in the integrity. Type 2 includes erroneous data that
can be corrected at times. These include, for example, errors
due to wrong time settings, miscalibration of instruments or
loss of sensitivity as seen in water quality sensors (García et al.
2017). Anomalous data of type 3 represent valuable information
from correct physical measurements but comprises all abnor-
mal observations that are caused by actual events in the net-
work, such as burst pipes, pump trips, irregular consumption or
valve operations. Research on abnormal consumption, leakage
and/or burst detection methodologies is dependent on anoma-
lies of type 3, while types 1 and 2 reduce the reliability of such
applications (Wu and Liu 2017). It is our aim to develop
a structured and improved identification of type 1 and 2
anomalies without misclassifying type 3 anomalies.

The existing literature focuses on batch validation of
already collected data to prepare the data for further applica-
tions. The current work focuses on near real-time validation of
the data as it is collected, while producing diagnostic plots
that help the operators to detect errors in the data collection.
Proper visualization of anomalies is just as important as their
detection, since this enables the operator to correct for errors
on a daily basis. If this is not to some extent automated in near
real-time, experience shows that errors can prevail for months
or years. Also, benchmarking, in terms of the number of
anomalies registered over a selected period, can help utilities
evaluate their data collection and acquisition performance.

To produce maximum benefits from the collected informa-
tion, a well-maintained operational database containing vali-
dated and easily accessible data should be constructed
(Cugueró-Escofet et al. 2016; Loureiro et al. 2016). In such
a database, invalid and missing observations can be repre-
sented by coexisting qualified estimates based on, for example,
time series analysis, physically based models or machine learn-
ing approaches such as artificial neural networks (Mounce,
Boxall, and Machell 2010; Quevedo et al. 2010; Branisavljević,
Kapelan, and Prodanović 2011; Cugueró-Escofet et al. 2016;
García et al. 2017). Such reconstruction can benefit from the
prior identification of anomalies, but we consider reconstruc-
tion of data outside the scope of the article.

Here we present a data processing framework that identifies
anomalies in the collected data and store these in a malfunction
indicator database (MAID) that is used for further analysis and
visualization of anomalies. Themethod can validate the collected
data without expert assistance and without sensor-specific para-
meterization, which will be useful when applied in future sys-
tems that include thousands of online sensors. If needed, the test
parameters can be tuned to change the sensitivity of anomaly
detection. To identify patterns in error occurrence, a diagnostic
tool based on the Jaccard coefficient is proposed. The tool gives
operators an idea of where to improve future data collection
procedures. The method is demonstrated on 223meter data sets
from three Danish utilities where no data validation procedures
are currently in place.

2. Methodology

2.1. Data processing framework

A conceptual scheme of a utility’s data collection, processing
and analysis system is shown in Figure 1. The system starts
with the collection and storage of data from various sources,
such as water quality sensors, pressure and flow meters, in
a raw meter database. The next step is to categorize every raw
data point as either an anomaly or a valid data point, based on
a series of anomaly testing. The results from the tests are
binary flags (true or false) stored in the MAID as an amend-
ment to the operational database. The MAID highlights
anomalies logged by sensors and facilitates the investigation
of possible patterns in errors occurring in the data series. Since

Figure 1. Data processing framework illustrating the transformation of data collected in a raw meter database to an operational database. The malfunction indicator
database (MAID) amendment stores flags from the anomaly testing process, then uses this for the analysis and visualization of errors, ultimately suggesting
improvements in current data collection procedures.
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the test flags are binary values, the storage demand for the
MAID entries is negligible compared to, for example, time-
stamp entries in the raw and operational database.

In the following, the entries in the databases are referred to
as matrices and vectors:

● A raw data set from one meter consists of n observations
x= [x1,. . .,xn] with respective timestamps t= [t1,. . .,tn].

● The MAID data for each data series is an n xmmatrixM of
binary values, where m is the number of tests included in
the anomaly testing phase. The value of Mk,i is true only
if the k-th test for the i-th time step detects an anomaly.

Flagged and missing data should be reconstructed and stored
together with the validated data in an operational database. Such
data are often stored in a uniform manner to account for differ-
ences in timestamp intervals between various data streams. This
application of the data is outside the scope of this article (Figure 1).
However, our error analysis and visualization step can use the flags
stored in the MAID to provide both short- and long-term diag-
nostics as well as day-to-day visualizations of errors for use in the
daily operation. Having detected anomalies, operators can use this
information to investigate whether the data are, in fact, erroneous
and to improve future data collection processes (Figure 1).

2.2. Anomaly testing of raw data

Seven tests (I–VII) form the anomaly testing process of the
raw data that aim to identify type 1 and type 2 anomalies.

A short summary explaining the occurrence of selected
anomalies and justifying the necessity of the tests is
given in the supporting information (SI) A. Tests I and II
are run in a sequential manner to provide regular data
streams to the subsequent tests III–VI that can be run in
parallel. Finally, all data points flagged by tests I–VI are
excluded in test VII. Whereas parts of the described tests
are included in standard extract, transform, load (ETL) pro-
cesses, their implementation may vary among practi-
tioners. Moreover, it is important to note that this list of
anomaly tests is not exhaustive, as it is based on the most
common anomalies that appeared in the analysed data
sets. Figure 2 exemplifies periods with validated and
flagged data for each of the seven tests in a simplified
manner. Based on time, a data point is seen as valid
(marked green) until a new data point, pattern or incon-
sistency violating the tests’ constraints has been registered
(marked red).

I. Duplicate timestamp test
The duplicate timestamp test (Figure 2(a)) flags any ti that is
not unique in M1. Similarly, the raw data is checked for
a regular data stream at the ‘communications level’ in
Cugueró-Escofet et al. (2016). If duplicate timestamps can
be replaced by known values, such as by an operator, it is
possible to adjust the data set without compromising future
applications. Otherwise, all duplicates represent a type 1
anomaly.

Figure 2. Overview of anomaly tests. Green and red distinguish valid and invalid data. Succeeding validated data are connected with a dashed line.
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II. Illegitimate format test
In the illegitimate format test (Figure 2(b)), all timestamps ti
that are linked with non-numerical observations xi are flagged
in M2.

III. Range test
The range test (Figure 2(c)) identifies all xi below or above
a minimum or maximum threshold, i.e. physically unfeasible or
dubious compared to the distribution of the data series.
Inspired by the locally realistic range test (Mourad and
Bertrand-Krajewski 2002), we flag values in M3 based on the
distance between the median and the 2.5th and 97.5th per-
centiles of the data series, multiplied by a factor of α and β,
respectively.

M3;i ¼ true
< P50% xð Þ þ P2:5% xð Þ � P50% xð Þ½ � � α; α > 1
> P50% xð Þ þ P97:5% xð Þ � P50% xð Þ½ � � β; β> 1

�
(1)

Being similar to the interquartile range, this test is not as
sensitive to outliers in data series as standard score-based
methods (i.e. using distance to the mean relative to the
standard deviation). This is particularly important, as anoma-
lies in the data series should not be allowed to obstruct the
identification of future anomalies. There is always a risk of
type 3 being flagged, since the test is based on the histor-
ical distribution of the data (e.g. if the data set has not yet
covered legitimate seasonal changes). This risk will decrease
if α and β are increased but at the cost of sensitivity. Note
that α and β values of 1 will result in 5% of the data being
flagged as anomalies, while larger values for these para-
meters rapidly decrease this fraction, such that α and β
values of 1.5 for normal distributed data will result in just
0.3% being flagged.

IV. Rate of change test
A rate of change test (Figure 2(d)) identifies unusual changes
in observations over time based on the concepts of the step
test (Estévez, Gavilán, and Giráldez 2011), signal gradient test
(Mourad and Bertrand-Krajewski 2002) and trend level test
(Cugueró-Escofet et al. 2016). A threshold θ for a likely rate
of change is defined by computing the 97.5th percentiles of all
absolute rates of change in a meter data set multiplied by
a factor of λ:

θ � P97:5%
Δxj j
Δt

� �
� λ (2)

Here, the rate of change Δx/Δt is the ratio between the difference
of two subsequent observations and their respective differences
in time. In the case that the rate of change between two obser-
vations is above θ, the measured value is flagged in M4. Having
flagged a value for two consecutive observations, the rate of
change for the next observation is computed based on the last
valid measurement and is tested for compliance with the thresh-
old of θ. Flagging is stopped if a measurement is below θ. As in
test III, the factor θ is based on the historical distribution of the
data and might lead to false positives. Additional information
about test IV is listed in SI B.

V. Flatline test
The flatline test identifies successive identical observations
(Figure 2(e)). Here, flatline segments are flagged in M5 if
successive identical observations more or equal to s cover
a period of more than p minutes:

M5; i;:::;iþs�1½ � ¼ truefxi ¼ xiþ1 . . . ¼ xiþs�1 and tiþs�1 � ti > pg
(3)

VI. Timestamp inconsistency test
The timestamp inconsistency test (Figure 2(f)) identifies irre-
gularities in timestamp intervals. This is done to check that
data is recorded and stored at a constant interval between
measurements. Varying timestamp intervals indicate errors
between measuring devices and data collection. Data are
flagged in M6 if 1) the gap between measured data is more
than q minutes; or 2) there are identical subsequent time-
stamp intervals less or equal to r. The latter check is needed
to avoid data being marked as flawed because of a persistent
change in logging frequency:

M6;i ¼ trueftiþ1 � ti > q or tiþ1

� ti� ti � ti�1; . . . ; ti�rþ2 � ti�rþ1ð Þg (4)

VII. Timestamp drift test
The timestamp drift test is used to identify meters with drift-
ing or changing time settings. Figure 2(g–h) shows an exam-
ple of a meter suddenly having a wrong time setting and
a meter drifting in time. The test works by assuming similar
patterns in the data over a selected period of days and weeks,
which allows for the identification of time shifts by comparing
a given week with previous weeks. This implies that the test
only works if the overall patterns in the data do not change
with time. For the test, data excluding flagged values from
tests I–VI is aggregated to hourly data to provide uniform time
series without changing time intervals, and to reduce the
computational time. Changing time settings are identified by
the following method for a data set of length j days.

First, a reference day rd and a test day td, with a period of
w weeks between, are selected, i.e. the test and reference day
represent the same weekday. Next, the reference day (including
the lags l = ± 12 h) is cross-correlated against the test day and the
peak correlation value Cdaily(d) and the corresponding hourly
time lag Pdaily(d) are determined:

Cdaily dð Þ ¼ argmax corr rd lð Þ; td½ � ¼ srd lð Þtd
srd lð Þstd

; l ¼ 0;�1; . . . ;�12
� �

;

d ¼ 1; 2; :::; n (5)

Pdaily dð Þ ¼ lag l of Cdaily dð Þ (6)

where srd(l)td is the covariance of rd(l) and td, and srd(l) and std
the standard deviation of rd(l) and td, respectively. Cdaily(d) and
Pdaily(d) are invalidated if more than one third of the data in
the reference or test period is unavailable. Next, Cdaily(d) is
used to compute a weekly correlation measure, Cweekly(d):
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Cweekly dð Þ ¼
P6

l¼0Cdaily d � lð Þ
Valid test days in Cdaily d : d � 6ð Þ½ � ; d ¼ 7; 8; . . . ; j

(7)

Cweekly(d) is invalidated if more than three days of data are
missing. Finally, a weekly measure of the hourly drift, Pweekly(d),
is determined:

Pweekly dð Þ ¼
P6

l¼0Cdaily d � lð Þ � Pdaily d � lð ÞP6
l¼0Cdaily d � lð Þ ; d ¼ 7; 8; . . . ; j (8)

Pweekly(d) is not computed in the case of previously invalidated
values of Cweekly(d).

To avoid a single week with a changed consumption pat-
tern (such as a vacation week) resulting in time drift flags,
steps 1–3 are run with three different reference periods and
w is set to a 1-, 4- and 8-week interval. A drift is identified in
the case that Pweekly(d) exceeds a threshold of ±2 hours, allow-
ing the time to fluctuate slightly before a flag is set.
Additionally, a flag is only raised in M7 if the following two
conditions are met:

(1) Cweekly(d)≥0.8, for at least two reference weeks w.
(2) |Pweekly(d)|>2, for more than two subsequent test days d.

These conservative conditions ensure that the test is run only
on data sets with a regular daily and weekly pattern, thus
reducing the risk of a false alarm.

Parameter selection. It is unavoidable that type 3 anomalies
are sometimes misclassified as type 1 or 2. This is one reason
why dubious data points should not be deleted or replaced
but rather flagged. Most tests presented have parameters that
can change the sensitivity of the test and thereby also result in
a trade-off between the misclassification of type 1 and 2
anomalies versus type 3 anomalies. To what extent such mis-
classification is a problem is dependent on the usage of the
data. Thus, favourable parameter settings may differ between
specific data sets. In Sec. 4.1, we propose a default parameter
setting that works well with all data from the three utilities in
the current study.

When a high proportion and variety of type I and II anoma-
lies are present in raw data sets, the distribution of the data,
independent of meter and data type, differs significantly (SI C).
In such cases, outlier cut-off values based on historic averages
and standard deviations may have an unwanted influence on
the detection of anomalies. For tests III and IV, it was decided to
base anomaly detection on the distance between median and
low/high percentiles in the raw data sets, which will provide
a more robust approach in case of skewed distributions.

Finally, utilities may assign varying quality levels to flagged
anomalies that depend on the severity of a test’s outcome, e.g.
for prioritization during operational troubleshooting. In this
study, no quality criterion was included.

2.3. Similarity analysis of anomalies

Similarities between flagged attributes in the MAID are ana-
lysed based on the Jaccard coefficient J, suitable for sparse

and asymmetric binary data (Tan, Steinbach, and Kumar 2006).
The similarity between a single binary feature Mk in the MAID
of two selected meters φ and ω are assessed by:

J φ;ωð Þ ¼ f11
f01 þ f10 þ f11

;where t φð Þ \ t ωð Þ (9)

Here, f11 is the number of attributes where φ and ω are equal
to one (i.e. flagged attributes), f01 is the number of attributes
where only φ is equal to one, f10 is the number of attributes
where only ω is equal to one, and t(φ) and t(ω) represent the
meters’ timestamps. The Jaccard coefficient ranges between
no similarity (0) and a perfect similarity (1) and is only com-
puted for matching timestamps. Here, we consider data
entries with identical minute stamps to be matching.

A Jaccard coefficient close to unity means that flags occur
simultaneously for two meters, which can be used to interpret
the source and nature of the anomalies. If, for example, multi-
ple sensors in an area are flagged as ‘out of range’ during the
same periods of time, it is most likely due to actual physical
conditions in the system (type 3 anomalies) rather than sensor
errors. However, if sensors are located far from each other but
share a high Jaccard coefficient, it might be due to database
or transmission errors.

3. Case studies

Data from three Danish water utilities of varying size were
analysed (Table 1). The three utilities represent typical water
network data acquisition practices in Danish utilities, where
mainly flow and pressure data are collected without
a systematic analysis and tracking of errors and anomalies.
Data is currently used for estimating minimum night flows
and producing daily averages. The data sets from utilities
A and C are based on pressure and flow measurements at
storage locations (waterworks and tanks), DMA inlets and out-
lets, and other critical locations of the WDN such as pumping
stations. In utility B, flow and pressure data is only collected in
pipes that are highly important to the utility. Most of the
installed devices in utilities A and C are Siemens MAG6000
and MAG8000 flow meters, whereas utility B measures flow
with Primayer’s PrimeProbe3. On average, a meter data set
covered a period of 32 months. Additional information about
the analysed utilities and an exhaustive description of the
analysed raw meter data sets, including examples of analysed
time series, can be found in SI C.

4. Results and discussion

All results listed in the following are a part of the error analysis
and visualization process (Figure 1).

4.1. Anomaly testing of tests I–VI

We investigated the impact of various test parameters by manu-
ally looking through time series from the utilities, hereby identi-
fying to what extent we agreed with the test results. Eventually,
we selected a single set of parameters that works well for all
three utilities (Table 2). It is this parameter set that is used for all
results presented in the following, and we envisage that this
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parameter set could be used as a default parameter set for other
utilities as well. This default parameter set can be seen as
a qualified estimate that provides a good starting point; how-
ever, each utility company can alter the parameters according to
its knowledge about its system and individual sensors. The dis-
tribution of raw and validated data for utilities A–C on different
time scales is shown in SI C. In SI D we discuss how a variety of
different parameter selections affects the overall test results, and
an example of data validation and analysis for operational use is
shown in SI E. In a near real-time implementation of tests III and
IV, the test parameters that are based on the historical distribu-
tion should be updated at a user-defined interval. In this study,
fixed parameters based on the entire data set available were
selected.

In the following, we focus on the results stored in the
MAID. Two mean error rates for tests I–VI were computed
based on each meter’s individual data set (Figure 3). The

‘data point error rate’ is the average rate of errors for each
sensor in the utility based on the number of flagged mea-
surements, while the ‘time error rate’ is the corresponding
value based on the time affected by flagged measurements.
Independent of utility and meter type, the time error rate
varied between 12% and 49%. Thus, it is common for all
three utilities to struggle to maintain a consistent and
anomaly free data stream. Only utility C has a median
value of the time error rate below 5% of data entering the
system in constant intervals (test VI), illustrating a better
data acquisition, maintenance and handling procedure than
the other utilities. For utility A, the time error rate was
above 15% for both flow and pressure measurements.
A similar high rate for test VI indicates that this is mainly
caused by missing or inconsistent data, as there is a large
discrepancy between the mean flag rate of time and data
points. In utility C, however, the data and time error rate are
more alike. This is due to the setup of the utility’s database,
as only one data point is stored if measurements do not
change over 15 minutes. The highest time error rates were
found in utility B, with up to 49% and 20% of flow and
pressure measurements, respectively. Missing data at such
high rates not only indicates clear systematic problems
within data acquisition practices but also challenges the

Table 1. Summary of analysed data sets from three utilities in Denmark. Consumption data from DANVA (2016). Meter types: P = pressure; Q = flow. See also SI C for
additional information.

Utility A B C

Name Halsnæs Vand A/S
HOFOR (Greater

Copenhagen Utility) Nordvand A/S

Water supplied [Mm3/yr] 0.6 50.5 7.1
Consumers [103] 10.4 585.8 142.7
Utility mains [km] 169 1085 529
Consumer/utility mains [km] 61.5 539.9 269.8
Waterworks 3 7 3
District Metered Areas (DMAs) 29 - 22
Number of meters/data sets [type] 68 (30P & 38Q) 44 (22P & 22Q) 111 (59P & 52Q)
Data period (avg. duration) 11/13–01/17 (Ø ≈ 25 months) 01/14–07/17 (Ø ≈ 33 months) 01/14–05/17 (Ø ≈ 35 months)
Total data points (P:Q) 33,487,833 (46:54) 5,691,133 (50:50) 157,876,298 (55:45)
Q – Average (min – max)(1) of medians [m3/h] 5.7 (0–60.8) 2.9 (−3.4–12.1) 61 (−12.6–463.1)
P – Average (min – max)(1) of medians [bar] 2.1 (0.3–4.3) 2.9 (1.4–5.1) 6.3 (4.8–7.4)
Q – Timestamp intervals [%] 91% in 1 min, 9% in other 54% in 5 min, 46% in 15 min 98% in 1 min, 2% in other
P – Timestamp intervals [%] 92% in 1 min, 8% in other 54% in 5 min, 46% in 15 min 97% in 1 min, 3% in other

Notes: 1) average, min and max of medians based on the median values of a utility’s individual raw meter data sets.

Table 2. Default set of parameters applied to the anomaly tests III–VI.

Test Parameters

III α, β = 2.5
IV λ = 2.5
V s= 3, p= 60 min
VI q= 60 min, r= 3

Figure 3. Mean meter flag rate of six different anomaly tests for the three utilities. The line across each bar represents the median flag rate. The data point bars show
the number of flagged data points relative to the total number of data points, while the time bars show the period of time represented by the flagged data points
relative to the total operating time of individual meters. Test types: I – duplicate timestamp, II – illegitimate timestamp, III – range, IV – rate of change, V – flatline
and VI – timestamp inconsistency.
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use and reliability of the data for later applications. For
utilities A and B, the timestamp inconsistency bar reveals
almost no error rate based on data points but a high rate
based on time, averaging 10% for all three utilities. Thus,
long periods of no data collection are not unusual. On
average, 35% of the flow measurements were flagged as
flatlines in utility B. The lowest average error rate based on
data points was found in pressure meters of utility A (3%).

Parameter selection and implications
The selected parameters have some implications for the
generated results. For example, there is a high risk that the
parameter selection of the flatline test (Table 2) has led to
neglect of anomalies at lower timestamp intervals. A future
implementation could include a varying resolution of the
number of significant digits in the flatline test or minimum
rate of change test to identify meters measuring data with
only minor changes, such as highlighting failing pressure
sensors. In the case of data sets with true flatline segments
(e.g. an emergency pump flow meter) utilities should have
the possibility to suppress the generated anomalies or to skip
certain tests from the overall analysis. It is possible that
physical boundaries in the range and rate of change tests
are known, and these should be applied instead of the for-
mulated methods. Moreover, water supply data can exhibit
strong seasonality on daily, weekly and yearly scales, and
ideally, the period used for determining the various test
parameters should be large enough to cover all of these
scales. When this is not the case, the operator should be
aware that the reliability of the tests is reduced. In general,
it would be beneficial to compare anomalies identified by
utility personnel or experts with the flags being raised by the
method, as conducted by Branisavljević, Kapelan, and
Prodanović (2011).

4.2. Anomaly testing of timestamp drift test (test VII)

It is commonly assumed that the internal clock of the data
sources (i.e. meter) has an adequate accuracy and only needs

few adjustments over its lifetime. To check if this is true, we
applied the timestamp drift test. We applied various combina-
tions of the parameters defining the conditions raising a flag
and discussed their outcome in SI D. In the following, the test
was applied according to the parameters and conditions sta-
ted in test VII (Section 2.2).

Figure 4 illustrates an example of a flow meter where a time
drift is visualized. The upper row in Figure 4(a) displays the
measured flow over time, and it is difficult to identify any pro-
blems from the time series itself except for missing data around
the 8th of April. However, a clear drift is visible, when illustrating
the time series by a week-by-week profile sectioned into the
applied test and reference weeks (Figure 4(b)). The second row
of Figure 4(a) shows the computed correlation value [Cweekly(d)]
for the illustrated period, based on the timestamp drift test with
a 1-, 4- or 8-week interval. A correlation value above the thresh-
old of 0.8 is observed for most of the period, i.e. a clear daily/
weekly recurring pattern is present in the meter time series. The
third row shows at which hour the highest correlation value
[Pweekly(d)] was determined. It can be seen that there is an
upwards trend, illustrating the drift in time. The drift started at
the end of March and was identified by all three reference
intervals. It appears that the logger time is corrected at the
beginning of April. However, whereas the 1-week interval slowly
decreases towards a peak correlation hour of ±2 (approx. 15th of
April), the 4- and 8-week intervals indicate that the new time
setting is approximately 6 hours different to the setting before
the drift started. Thus, the drift test is capable not only of identi-
fying drifts in time but also of showing when a time setting is
different (potentially erroneous) from earlier settings.

Test VII is summarized for all utilities in Figure 5. The first
test condition can be interpreted as the percentage of data
where the test could be run. For example, column 1 of utility
A shows that 58% of the flow data passed test condition 1. In
other words, 58% of the data included a regular weekly flow
pattern as required by the test. Column 2 represents the
number of meters meeting test condition 2, i.e. meters
where a time drift was found at least once. This was the case
for 10 meters in utility A.

Figure 4. Example of a drifting flow meter in utility A. (a) The upper row displays the measured flow over time. The second and third row illustrate the computed
correlation values [Cweekly(d)] and [Pweekly(d)] based on the applied test and three reference weeks needed in test VII. The drift is visible in (b) where the reference
weeks are plotted against the test week at three selected periods.
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The test was conducted only on periods excluding flawed
data (Figure 3). Consequently, the lowest percentage of data
feasible for drift checking was found in utility B, with only 23%
of flow and 29% of pressure data (Figure 5). However, 15 meters
out of 44 drifting at some point is still a very high proportion of
meters with a drift error. The highest share of data passing
condition 1 was found in utility C, with up to 62% of flow and
55% of pressure data. Utility C confirmed that it observed drifting
time in many of its battery-driven flow meters. To some extent,
this validates the applied method. However, utility C had the
lowest number of flow meters with a drift. A likely explanation
includes the more proactive approach taken by the utility to
correct meter errors. If the utility identifies and corrects a drift
at a sufficiently early stage, the test will no longer raise an alarm
owing to the conditions stated. In general, the test depends on
a regular recurring pattern in the data and thus will not be
applicable to all data series. Also, it is possible that the test
might identify when a time setting is very different (potentially
erroneous) compared to earlier settings but does not represent
a drift. Nevertheless, our example illustrates the usefulness of
testing for drifts.

4.3. Similarity analysis of anomalies

The Jaccard coefficient determines whether there are similarities
or convergences in anomalies throughout the network, which
can be an effective indicator of where to look for errors. Figure 6
illustrates the Jaccard coefficient for selected tests from utilities

A and C. A Jaccard coefficient between 0 (marked green) and 1
(marked red) illustrates the degree of similarity in the occurrence
of anomalies. In the figure, each flow and pressure meter was
assigned an ID according to the total number of meter data sets
and the Jaccard coefficient was evaluated for each set. Duplicate
(M1) and illegitimate datum flags (M2) were evaluated as one
category. These anomalies, as well as timestamp inconsistencies,
occur in most cases simultaneously in meters ID 1–8 and ID
38–44 in utility A, evident from a Jaccard coefficient close to
unity for these meters (Figure 6). These meters were not con-
nected to the same supply areas nor did they use the same data
transmission, but their data was collected in the same database,
different from the remaining meters. This observation can be
used by the utility to revise and improve its database setup.
Furthermore, in the timestamp inconsistency test (test VI),
a large number of flow meters and pressure meters have
a high similarity in sets of two, visualized in the form of an almost
straight line between flow and pressure sensor IDs in the Jaccard
coefficient plot. As most pressure meters were installed to send
data through a flow meter, any lack of data transmission would
affect both flow and pressure observations at the same time. In
the case of utility C, flagged values within test VI share a high
similarity within a group of pressuremeters and thesemeters are
all located in the same supply area. Interestingly, measurements
below the minute step appear simultaneously at the highlighted
meters, indicating unknown meter or database settings or mal-
functions. Jaccard coefficients for all remaining tests I–VI in utility
A–C can be found in SI F.

Figure 5. Summary of timestamp drift test. The data column accounts for the percentage of data where test condition 1 was met (Cweekly(d)≥0.8, for at least two
reference weeks w). The meter column accounts for the number of meters meeting condition 2 at least once over the course of the measured period (|Pweekly(d)|>2,
for more than two subsequent test days d).

Figure 6. Jaccard coefficient computed for different tests from the anomaly testing covering flow and pressure meters. Results from the illegitimate and duplicate
timestamp test were merged and illustrated in one column. Test types: I – duplicate timestamp, II – illegitimate timestamp and VI – timestamp inconsistency.
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The occurrence of systematic errors (Figure 6) and large
numbers of anomalies in the various tests (Figure 3) empha-
sises that there is a need for systematic data validation. It is
our hope that the proposed methodology can assist a utility in
systematically analysing errors and thereby markedly increase
data quality in the future.

4.4. Future work

The next logical step includes a reconstruction process, gen-
erating qualified estimates of data being flagged as anomalies.
The reconstruction method can utilize the MAID database in
the training/calibration process to avoid being influenced
negatively by anomalies of types 1 and 2. Additional data
sets that can help to signal false misclassification of anomalies
and improve the reconstruction process should be incorpo-
rated where possible. This includes data sets signalling the
status of pumps, valves, external temperature or battery
charge in selected devices. During reconstruction, the spatial
and temporal redundancy between meters can be exploited
(see, e.g. Cugueró-Escofet et al. (2016)); this, among other
things, can make it possible to actively identify and flag type
3 anomalies. For example, due to a sudden drop in pressure, it
is possible that a ‘rate of change’ flag was stored in the MAID.
If the reconstructed value based on nearby sensors was close
to the observed flagged value, the anomaly is unlikely to be
due to a sensor error and can thus be categorized as type 3
anomaly.

5. Conclusion

This study revealed the need for the validation of meter data
collected in water distribution networks. We have proposed
a semi-automatic method to verify the collected data and
highlight anomalies to deal with the increasing volume of
collected data. The implementation of this method in a near
real-time version, including a proper visualization of the error
flags, will make it easy for the operators, on a day-to-day basis,
to see whether sensors and data collection systems are work-
ing properly and to identify and correct errors when they arise.
Having applied the method on 223 meter data sets from three
Danish utilities, we found that, on average, at least 10% of the
time that a meter collected data it was flagged as anomalous.
For one utility, the collected flow data contained anomalous
characteristics for an average of more than 35% of the time.
Certain anomalies occur simultaneously throughout the net-
work. Highlighting the occurrence of such similarities can help
to improve future data collection and thus reduce the number
of stored anomalies. The high rates of errors/anomalies could
have been avoided if the proposed method had been imple-
mented to automatically highlight meter errors in near real-
time.
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A. Anomaly sources 

 

Table A-1 lists major anomaly sources that contribute to errors and irregularities captured in the raw meter 

data sets. In addition, it is stated which of the applied tests in the anomaly testing were applied and designed 

to identify mainly a certain type of anomaly. 

Table A-1. Potential anomaly sources that contribute to errors and irregularities and the tests applied to detect their main occur-

rence in raw meter data. Anomaly sources based on actual events in the network are not considered.  

 

  

 Anomaly source Anomaly background Main tests  

  
Wrong time settings (incl. ‘drifting’ clocks) are an effect of erroneous 
synchronization or manual manipulation of the internal clock, incorrect 
adjustment for daylight saving time, etc. These settings can bias data ap-
plications such as DMA balances and reduce the overall value of smart 
online control of the water network. 

I, VII  

 
Many data applications depend on complete data streams. Errors within 
transmission and storage procedures, power outages, etc. can lead to ille-
gitimate and missing data periods and highlight systematic problems of 
data acquisition. 

II, VI  

 
The miscalibration and loss in sensitivity of sensors, mechanical errors, 
and observations above or below cut-off values/deadbands decrease the 
overall reliability of the collected data streams. Among other things, 
these anomalies typically highlight meter malfunctions. 

III–V  

  

B. Anomaly testing - additional information 

 

TEST IV) A description of the flagging procedure in the rate of change test (test IV) is summarized in the 

following: 

1)  Identify all u ϵ tn where |∆x|/∆t ≥ θ. 

2)  Split u into v sets of consecutive numbers. 

3)  Flag all first entries within v in M4. 

4)  Return to step 1 and leave the flagged values out of the analysed data set. Stop, if no further u are found. 

Section 2.1 of the main paper 

Operator 

Transmission 

Sensor 

Storage/application 

Section 2.2 of the main paper 
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C. Data set description 

C.1 Time series examples 

To provide insight on the analysed data series from the three utilities, we grouped measurements from selected 

meter data sets into a week’s 168 hours. Then, to illustrate the variation in demand/flow and pressure, the 

percentile distribution was computed for each hour. The outcome for flow and pressure time series is shown 

in Figure C-1 and C-2, respectively.  

 

  

  

  

  
Figure C-1. Example of eight flow time series applied in the case study. The percentile distribution is based on having grouped all 

measurements into a week’s 168 hours. 

Figure C-1 shows that there is a great variety in the analysed flow time series. For example, the median flow 

and lower percentiles in Figure C-1a reflect that no flow is usually measured at all; however, there is a tendency 

towards higher flow rates during the hours before midnight, as shown by the 25th to 75th percentiles. Other time 

Section 3 and 4 of the main paper 
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series show a distinct daily pattern, as in Figure C-1c; this is the result of changing flow rates between summer 

and winter months. Figure C-1d shows an observation point with minor seasonal variations. Whereas these 

time series have a residential pattern, Figure C-1f shows high deviations in flow only during working days. As 

with flow, in selected pressure series a distinct daily pattern is visible, pressure being higher during the night 

than over the course of the day (e.g. Figure C-2d and C-2g). The pressure series in Figure C-2b and Figure C-

2h indicate a higher share of anomalies, as a large proportion of measurements is around or even below 0 bar. 

 

  

  

  

  
Figure C-2. Example of eight pressure time series applied in the case study. The percentile distribution is based on having grouped 

all measurements into a week’s 168 hours. 
 

 

C.2 Comparison of raw and validated data 

All validated data in this section is based on the same parameter selection as summarized in Table 2. Table C-

1 summarizes some key features of the applied data sets before and after data validation. It can be seen that 

the largest data sets were collected by utility C. Most of the data sets of utilities A and C are collected in 1-

min timestamp intervals, whereas the highest share of data from utility B is stored at 5- or 15-min intervals. 
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Our data validation found the highest number of invalid data points (29.88%) in flow measurements of utility 

B.  

Table C-1. Total number of data points in flow (Q) and pressure (P) meter data sets from utility A-C before and after data validation 

including timestamp interval distribution. 
  

    Timestamp interval distribution [%] 
Utility Type Figure Total data points 1 [min] 5 [min] 10 [min]  15 [min] 60 [min] Other [min] 

Raw data  

A 
Q 

Figure C-2(a) 
18,150,889 91.15 0.37 6.11 0.46 0.93 0.99 

P 15,336,944 92.45 <0.0 6.06 0.41 0.22 0.85 

B 
Q 

Figure C-3(a) 
2,842,734 <0.0 53.85 <0.0 46.12 <0.0 0.03 

P 2,848,399 <0.0 53.78 <0.0 46.19 <0.0 0.03 

C 
Q 

Figure C-4(a) 
71,249,575 97.80 0.07 0.02 0.29 <0.0 1.82 

P 86,626,723 96.50 0.03 <0.0 0.02 <0.0 3.45 

Validated data (excluding anomalies flagged by test I-VI) 

A 
Q 

Figure C-2(b) 
 (-8.09%)     16,682,587 91.40 0.30 6.60 0.49 0.97 0.23 

P  (-4.85%)     14,592,458  93.38 <0.0 5.96 0.34 0.19 0.12 

B 
Q 

Figure C-3(b) 
(-29.88%)      1,993,408  <0.0 67.46 0.02 30.93 0.03 1.57 

P  (-7.05%)       2,647,703  <0.0 54.14 0.06 45.46 <0.0 0.34 

C 
Q 

Figure C-4(b) 
 (-4.52%)     68,030,580  99.21 0.04 0.01 0.01 <0.0 0.72 

P  (-8.75%)     79,043,261  97.83 0.11 0.04 0.02 <0.0 2.00 

Figure C-3 exemplifies the possible distribution of raw data collected in selected flow and pressure meters for 

each of the three utilities before and after application of data validation (tests I–VI). Each of the six histograms 

represents a unique distribution pattern and it is difficult to identify clear similarities in the underlying distri-

butions; however, some features are shared between selected meters, such as a lower bound of zero in the flow 

meters of utilities A and C. Moreover, all raw data histograms, except the pressure meter in utility C, indicate 

that a large proportion of type I and II anomalies have been stored in the data. For example, in the shown (raw 

data) pressure meter of utility B, more than 10,000 data points have a pressure value below 0 bar and a smaller 

proportion includes values around 30 bar. Observations within this range are highly unlikely, considering the 

utility’s pressure meters are located on distribution mains inside the city. After data validation, a large number 

of anomalies have been removed from the histograms. In terms of pressure data, all 0-bar data was deemed 

invalid in utility A. In utility B, a reduced amount of infeasible pressure measurements is still kept in the data, 

demanding a stricter choice of parameters. In the case of utility C, no values were flagged. Similarly, the 

number of ‘clear’ anomalies decreased in the three flow meters.  

The histograms with validated data show the problems behind a global parameter selection of the different 

tests when applied to utilities with varying network setups. As in the case of pressure measurements, a simple 

test of min/max measurements above or below a certain threshold could have removed the remaining infeasible 

measurements. Thus, including specific system knowledge could increase the value of the validation method. 

In some cases, this knowledge is not available and a stricter choice of parameters could be a solution, although 

this could also increase the detection of false positives. In the case of the shown pressure meter in utility C, 

the selection of parameters has not negatively affected the anomaly detection visually, i.e. there was no flag-

ging of values that appear correct.  
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 Utility A  Utility B  Utility C  
 

Raw data examples 

   

   

Validated data (excluding anomalies flagged by test I-VI) 

   

   

Figure C-3. Flow and pressure data histograms from six selected meters in utility A-C before and after data validation. Owing to the 

selected histogram bin size and margins, a minor share of data is not shown at maximum 0.06% (in this case raw pressure data in utility 

C).  
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Figure C-4 to Figure C-6 show the raw and validated data sets (tests I–VI) of utilities A–C distributed on daily, 

weekly and monthly time scales. Even though around 8% of the flow data (Table C-1) was flagged as anoma-

lous in utility A (Figure C-4a) the data validation has no clear effect on the distribution of the utilities’ flow 

data (Figure C-4b). Also, a daily pattern and some seasonality are visible in terms of higher summer consump-

tion. The raw pressure data show a clear deviation between the 50th and 75th percentiles in November and 

December, and in the 23th hour compared to the remaining time steps. This can be explained by the fact that 

parts of the data collection system stopped working properly at the end of October 2016 and first continued 

functioning at the beginning of 2017. Moreover, in utility A, often at 23.00 hours each day, invalid (non-

numeric) data was collected. Having applied the data validation tests, the 75th percentile decreased notably in 

February, in October and in the first hour of the day. This can partly be explained by around 25% of the 

pressure data being metered around 4 bar and the remaining 75% around 2 bar. Even slight deviations in the 

number of flagged values can move the 75th percentile. In February, for example, multiple timestamp dupli-

cates (test I) were flagged in the high pressure meters, moving the 75th percentile towards a lower pressure. 

Among other things, a higher number of flatline anomalies (test V) had the same effect in the first hour.  

The raw data of utility B is displayed in Figure C-5a. With regards to flow data, low flow hours (20.00 to 04.00 

hours), certain days (Saturday and Sunday) and certain months (December–May) are particularly prone to 

having a median flow of around 0 m3/h. Having applied the data validation procedure (Figure C-5b), the me-

dian flow increased on all time scales. This is mainly because of the high percentage of flatline anomalies (test 

V) flagged in utility B that occur during low flow periods. The raw and validated flow data display a daily 

flow pattern as seen in utility A. However, the median has increased significantly in the validated data sets, 

indicating a good performance of the selected test parameters. Also, a very high pressure measured in April, 

May and June (Figure C-5a) was no longer visible after data validation (Figure C-5b). Possible explanations 

include anomalies flagged by tests III and IV. Finally, the data validation has not flagged a certain percentage 

of negative pressure values. This can be explained by the fact that the majority of pressure values in selected 

meter data sets, erroneously, are negative. As in utility A, there is no general difference in the observed pressure 

on different time scales.  

In the case of utility C, there are only minor differences between the raw data set (Figure C-6a) and the vali-

dated data set (Figure C-6b). This can partly be explained by a more proactive approach in utility C to repair 

and solve issues within the data acquisition in a reasonable amount of time, reducing the overall number of 

anomalies in the raw data sets. As in utility B, bidirectional flows are also captured in the data sets, as can be 

seen in the hourly flow plot. The greatest difference between raw and validated data sets can be seen in the 

2.5th pressure percentile on a monthly scale. In the validated data set, the lower hinge is more constant around 

50 mWC. This stabilization was most likely caused by anomalies flagged by test V. A daily flow and pressure 

pattern is visible in the raw and validated data sets, but cannot be seen on a larger time scale. 
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 Flow  Pressure 
 

 
 

(a) Utility A (raw data) 
 

 

 
(b) Utility A (validated data, excluding anomalies flagged by test I-VI) 

 
Figure C-4. Summary of raw (a) and validated (b) data sets in Utility A. Upper and lower hinge and whiskers represent 25th, 75th, 

2.5th and 97.5th percentiles. The line across the box displays the median. Except non-numeric values, no outliers have been removed 

from the raw data analysis. Values below the 2.5th and above the 97.5th percentiles are not displayed. 

 

 



 9 Supporting Information (SI) 

 Flow  Pressure 
 

 
 

(a) Utility B (raw data) 
 

 

 
(b) Utility B (validated data, excluding anomalies flagged by test I-VI) 

 
Figure C-5. Summary of raw (a) and validated (b) data sets in Utility B. Upper and lower hinge and whiskers represent the 25th, 

75th, 2.5th and 97.5th percentiles. The line across the box displays the median. Except non-numeric values, no outliers have been re-

moved from the raw data analysis. Values below the 2.5th and above the 97.5th percentiles are not displayed. 
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 Flow  Pressure 
 
 

(a) Utility C (raw data) 
 

 
(b) Utility C (validated data, excluding anomalies flagged by test I-VI) 

 
Figure C-6. Summary of raw (a) and validated (b) data sets in Utility C. Upper and lower hinge and whiskers represent the 25th, 

75th, 2.5th and 97.5th percentiles. The line across the box displays the median. Except non-numeric values, no outliers have been re-

moved from the raw data analysis. All values below the 2.5th and above the 97.5th percentiles are not displayed. 
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D. Sensitivity of parameters applied in the anomaly testing 

 

It is almost inevitable that erroneously flagged data will be contained in the malfunction indicator database 

(MAID). In general, incorrect flagging of meter data occurs when test parameters are chosen that are too sen-

sitive. Moreover, the range (test III) and rate of change test (test IV) depend on the historical distribution of 

the data. In such a case, it is difficult to avoid flagging of type 3 anomalies if the analysed data set covered 

periods where the system behaviour changed drastically. Thus, to reduce false alarm rates and flagging of type 

3 anomalies, parameters had to be chosen carefully in selected tests of the anomaly testing framework. First, 

the results of different parameter combinations for tests III–VI are shown and discussed, following which 

examples are given of parameter combinations affecting the applied conditions of test VII. 

D.1 Tests III–VI: Parameter sensitivity 

Figure D-1 and Figure D-2 illustrate the sensitivity of the anomaly tests III–VI to the variation of parameters 

within the selected tests for all flow and pressure meters, respectively. Each column illustrates how the average 

percentage of flagged data points changed by a given parameter set. In the range test (test III) and change in 

rate test (test IV), higher percentile rates in combination with increasing the values of α/β and λ led as intended 

to a lower number of flagged values.  

 

 

 

 
     α/β    λ          s        r  

 

Figure D-1. Effect on error rates of all flow meters by varying test parameters on the range test (test III), change in rate test (test IV), 

flatline test (test V), and timestamp inconsistency test (test VI), based on the raw data from three utilities.  

Section 2.2, 4.1 and 4.2 of the main paper 
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    α/β  λ            s        r  

 
Figure D-2. Effect on error rates of all pressure meters by varying test parameters on the range test (test III), change in rate test (test 

IV), flatline test (test V), and timestamp inconsistency test (test VI), based on the raw data from three utilities. 

In general, the figures illustrate that certain types of anomaly vary between the utilities. In the case of near 

real-time applications, however, it is important for the utility to identify a set of parameters that does not 

generate too many false alarms while correctly identifying anomalies. As the variation of parameters has a 

clear impact on the total number of data points, the parameters need to be fine-tuned. A utility should not only 

fine-tune the test parameters based on the measured parameters, but also change the test parameters inde-

pendently for certain meter groups. For example, meters with varying sampling intervals or different objectives 

(e.g. DMA inlet or emergency pump monitoring) will probably need different optimal parameter settings. The 

flatline test column (test V) shows that varying the length of time and number of consecutive steps having an 

identical value has less influence on the mean flag rate, meaning that the flatline segments captured by these 

parameter sets in general occur over a longer period. The figure also illustrates that utility B has a notably 

higher frequency of flatline segments than the other two. It is likely that decreasing p would increase the error 

rate in utilities A and C notably, as a larger share of their data was measured at a higher sampling frequency. 

In this study, the originally stored number of significant digits in each meter set was included in the flatline 

test. Likely, more flatline segments would have been detected, when a reduced number of significant digits 

was included in the test. Moreover, the timestamp inconsistency test (test VI) shows that, for utility C only, 

varying parameter r has a visible influence on the mean rate of flagged values. This can be explained by the 

fact that the data collection system in utility C deletes equal measurements of less than 15 minutes duration. 
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D.2 Test VII: Sensitivity of conditions  

In the timestamp drift test (test VII), the number of meters where a drift had been identified was initially 

determined by two conditions (Sec. 2.2). The sensitivity of test VII was assessed by varying the four parameters 

used to raise a flag in the conditions, namely Cweekly(d), the number of reference weeks w included, Pweekly(d) 

and the number of subsequent days d. Figure D-3 and Figure D-4 illustrate the effect of changing these param-

eters on the total number of meters with a drift for all flow and pressure measurements, respectively. As with 

the sensitivity of tests III–VI, an increase in the individual parameters led to a decrease in the number of 

identified anomalies, i.e. meters with drift. Also, this test needs to be fine-tuned by sensitivity; certain patterns 

in a utility might occur that would raise the false alarm rate. It seems that an increase in Pweekly(d) had the 

largest impact on the overall number of meters where a drift was identified. A similar effect was seen for 

Cweekly(d), because an increasing threshold also reduces the amount of data available in the test. The application 

of rather loose conditions shows that most drifts were identified in utilities A and C, which is linked to the 

total number of meters installed. Interestingly, increasing the parameters has only a small effect on the overall 

number of meters with a drift in utility B. A clear change in the number of meters is first seen when Pweekly(d) 

> 3 hours. 

 

 
Figure D-3. Sensitivity analysis of the timestamp drift test (test VII) for all flow meters. Four parameters were varied: 1) the weekly 

correlation value [Cweekly(d)], before the data was accepted in the test; 2) the threshold hour before a test identifies a logger as drifting 

[Pweekly(d)]; 3) the number of consecutive days d in which the test has to identify a drift before a flag is raised (1d–3d); and 4) the 

number of reference weeks w (1w-3w) that have to agree on a drift before it is flagged. 
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Figure D-4. Sensitivity analysis of the timestamp drift test (test VII) for all pressure meters. Four parameters were varied: 1) the weekly 

correlation value [Cweekly(d)], before the data was accepted in the test; 2) the threshold hour before a test identifies a logger as drifting 

[Pweekly(d)]; 3) the number of consecutive days d in which the test has to identify a drift before a flag is raised (1d–3d); and 4) the 

number of reference weeks w (1w-3w) that have to agree on a drift before it is flagged. 

D.3 Test VII: Additional notes 

The timestamp drift test is still under development and its reliability and feasibility need to be improved, as 

only a relatively low percentage of the collected data could be run by the test with the applied conditions. 

Another opportunity for improvement is where the test identifies drifts that, for example, reflect correct 

changes in the DMA set-up. Also, future applications should flag data at a lower scale than ±2 hours. This 

would make it possible to detect incorrect daylight-saving time transitions on a daily operation. It would be 

interesting to analyse whether certain events, such as a sudden drop in pressure or fluctuation in flow, where 

the exact time is known, can be used to verify the occurrence of drifts identified by test VII. Furthermore, drifts 

could be verified by using the temporal and spatial redundancy between meters, e.g. by including a measure 

of similarity between similar time series. Since test VII is dependent on a regular recurring pattern in the data, 

it will never be applicable for all data series; the current implementation is therefore to be seen as a first draft 

that illustrates the usefulness of such a test, and we expect to be able to improve it. 
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E. Example of data validation and analysis for operational use 

 

Figure E-1 illustrates two examples of data validation and analysis for operational use. Figure E-1a provides 

an example of the ‘flag status’ based on all anomaly tests of 20 sensors in utility A over a period of four days. 

Flagged data was found from single (minute) data points for up to several days of consecutive flagged data 

(e.g. pressure meter P7). For example, short periods of invalidated data are visible at a higher rate in the flow 

meters Q1 and Q2. Q6, Q9 and P7 indicate ‘dirty data’, of which Q9 and P7 likely have no data available at 

all. 

 

 

(a) Daily data verification (utility A). (b) Flatline anomaly test analysis (utility B). 

Figure E-1. Example of anomaly visualization for operational use. (a) Raw meter data validation from ten flow (Q) and pressure (P) 

meters in utility A in July 2015. (b) Mean flag rate based on all raw data points for the flatline test in pressure meters of utility B. 

Whiskers display the total flag rate based on all anomaly tests in the individual pressure meter. 

 

It can be beneficial to focus on the individual error rates of the meters (Figure E-1b). For example, identifying 

differences in the individual error rates can be used to highlight meters not being sensitive enough to detect 

certain flow regimes at the installed location. In our case, the pressure meters P17–P19 tended to have a sig-

nificant higher rate of flatlines than the remaining meters, which calls for inspection of these meters. 
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F. Extended Jaccard coefficient analysis 

 

Figure F-1 illustrates the Jaccard coefficients based on flags determined by tests I–VI for all utilities. We 

merged the anomalies of tests I and II into one group owing to the low number of flags in both categories. In 

the case that a meter contains flags in a certain anomaly process, the Jaccard coefficient by itself results in a 

high similarity of 1. If a meter data set contains no anomalies, no Jaccard coefficient, i.e. a value of zero, is 

computed. This results in the almost full red straight lines such as those seen in the range test of utilities A and 

B. In case of utility B, only a certain similarity pattern is visible for the flatline test of flow meters. This pattern 

is likely to be due to the high rate of flatline segments already shown in Figure 3 in the main paper. Also, 

Figure 3 shows that the number of missing data points (not based on time) was relatively low for utility B; 

however, the Jaccard coefficient of around 0.5 in Figure F-1, covering almost the entire timestamp incon-

sistency plot, indicates that large parts of the system lack data or went offline at the same time. High rate of 

change test and flatline test similarities are seen between six pressure meters (ID > 90, Figure F-1). All six 

pressure meters are positioned in an emergency pumping station. Thus, under normal circumstances all meters 

should log more or less constant values and change drastically if pumping starts. This might be reflected in 

terms of flags captured by the two tests. According to utility C, the meters are connected to the same program-

mable logical controller before being sent to the raw database, potentially being the source of the anomaly. 

Section 4.3 of the main paper 
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Figure F-1. The Jaccard coefficient computed for six different tests from the anomaly testing, based on the available flow and pressure 

meters. A Jaccard coefficient between zero and one describes no and very high similarity respectively for the occurrence of flags in the 

applied tests. Test types: I – duplicate timestamp, II – illegitimate timestamp, III – range, IV – rate of change, V – flatline and VI – 

timestamp inconsistency. 
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Abstract An up-to-date knowledge about the location and status of valves is of high priority for many 

utilities. In this study, we extend a water distribution network model with a temperature model in 

order to utilize temperature data for the model-based identification of valve status and location using 

a genetic algorithm (GA). A semi-synthetic and a real case study were run using temperature data 

from two district metering areas (DMAs) in Copenhagen, Denmark. First, a DMA model with real 

temperature data at the inlets and synthetic temperature data at the DMA’s nodes was tested to 

identify five closed valves. A weighted initial population approach increased the GA’s rate of 

successful convergence. In the second study, a transportation network model was used, including 

hydraulic and sample boundary temperature data, and the findings were checked in the field. The 

results of the GA search and subsequent testing revealed faulty valves and incorrect GIS information 

and has helped the utility to identify locations critical to their understanding of the system. The results 

show that the application of temperature data and models is useful for understanding the dynamics in 

water distribution networks.  

Keywords: Hydraulic model; Temperature; Temperature modelling; Valve; Water Distribution Network.  

1 Introduction 

The unknown or doubtful status of valves in water distribution networks (WDN) is a common 

problem within the field of WDN operation and maintenance. Ultimately, this uncertainty slows down 

the operation and maintenance of the WDN and places in jeopardy the results obtained from hydraulic 

modelling. Aging infrastructures and the establishment of district metering areas (DMAs) lead to an 

increased focus on valves in the WDNs, as these control points are necessary when dealing with pipe 

repair and replacement (Walski et al., 2003; Sage, 2014; Wilson, 2011). During such processes, the 

ability to operate a utility’s valves is important as it has an overall effect on the reliability of the 

WDN, such as the number of customers without service (Deb et al., 2012). For example, when a valve 

cannot be shut off, on average 1.7 other valves need to be closed, affecting larger service areas and 

resulting in higher collateral damage (Wilson, 2011). Moreover, valves with unknown status can pose 

a risk to the safety of consumers if a fire occurs (e.g. Delgado and Lansey, 2009) or lead to 

deterioration of the supplied water quality by unintentionally creating sections of the WDN with 

stagnant water. Incorrect settings of valves within hydraulic models have a crucial impact on the 

modelling results. For example, where real flows are not accurately represented by a hydraulic model 

because of incorrect valve settings, it is not possible for a water quality model to generate reliable 

mailto:jkir@env.dtu.dk
mailto:morb@env.dtu.dk
mailto:mryg@env.dtu.dk
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results (Savic et al., 2009). It is thus of major importance for utilities to have an up-to-date knowledge 

about the location and status of valves in the WDN. 

Many utilities maintain valve books, i.e. databases with information about the status, operability, 

location and type of valves, and this information serves as a crucial input within asset management 

(Walski et al., 2003; Wilson, 2011). Based on this documentation, valve settings (i.e. open or closed) 

are often assumed to be known when calibrating WDN models (Sophocleous et al., 2017). However, 

with limited resources spent on the testing, mapping and maintenance of valves, it is questionable 

whether the available information on the WDN is accurate and up-to-date. Wu et al. (2012) state that 

it is common for utilities to be unaware about the correct status of a limited number of valves. Also, 

the experience from Danish utilities shows that the manual search for the correct valve status and 

location in the field is a time-consuming and often unsuccessful task. This can be due to many reasons. 

Examples include poor documentation, mechanical failure of valves, and uncertainty based on 

whether valves that have been closed during construction, testing or system maintenance have been 

reopened afterwards (Delgado and Lansey, 2009; Do et al., 2018). 

In recent years, the number of data collection devices, such as smart meters installed at consumers’ 

homes and flow and pressure meters in the WDN, has increased significantly. These advances open 

up several opportunities within the field of urban water research. One advance can be found within 

the area of WDN model calibration, where the lack of sufficient field data of high quality is often 

seen as one of the most restricting factors, eventually determining model accuracy (Savic et al., 2009; 

Walski et al., 2003). Likewise, the identification of closed valves and leaks depends on the quantity 

and quality of data available (Walski et al., 2014).  

Typically, closed valves are identified, when there is a high level of discrepancy between the 

modelled and observed pressures throughout the network (Walski et al., 2014, 2003). It is often 

difficult to identify such deviations, as the head loss is low during normal flow conditions. Hydrant 

flow tests or opening of blow-off valves can increase the head loss through the system, but it is very 

time consuming (and thus costly) when applied in a WDN model building process (Ray et al., 2007). 

Delgado and Lansey (2009) identified a closed valve in a ‘desktop study’ by a hydraulic transient 

analysis, examining the reflection of simulated pressure transients. In the majority of valve status 

identification studies, genetic algorithms (GAs), combining results of pressure and flow simulations 

and real/synthetic measurements, have been applied (Do et al., 2018; Sophocleous et al., 2017; Walski 

et al., 2014, 2003; Wu et al., 2012). Moreover, most research has focused on fully closed or opened 

valves, whereas Do et al. (2018) and Wu et al. (2012) also looked for partially closed valves. The GA 

is used to explore the search space of possible solutions (i.e. combinations of closed and opened 

valves) by minimizing a selected fitness function.  

Walski et al. (2014) list additional recommendations and requirements on how to apply GAs 

successfully for valve status and leak detection. These include applying the GA only to those parts of 

the WDN model where sufficient data are available and reducing the search space where possible, 

ultimately preventing the GA from guessing on selected valve statuses. Walski et al. (2014) 

recommend to look for a trend within the best solutions and use this information to guide the utility 

to a delineated area in the WDN when searching for leaks. We transfer this recommendation to the 
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valve status identification process, as combinations of valve statuses may lead to similar modelling 

results, eventually highlighting areas of concern in the WDN. The search space of the GA can be 

large when it is assumed that all valve locations and statuses in the WDN are doubtful. Wu et al. 

(2012) therefore assumed that only a small fixed number of valves have an incorrect setting, hereby 

reducing the search space. Do et al. (2018) and Sophocleous et al. (2017) simplified the search space 

by only looking at valves with a high sensitivity to changes.  

Some studies have modelled the water temperature in the WDN. Examples include analysis of the 

water temperature in general (Blokker and Pieterse-Quirijns, 2013), and water quality in terms of 

disinfectant by-product generation (Eck et al., 2016) and as a heat source (Blokker et al., 2013; De 

Pasquale et al., 2017; Hubeck-Graudal et al., 2019). We hypothesize that temperature data can be a 

major benefit in addition to conventional flow and pressure data when the water temperature changes 

over time due to the surrounding soil temperature. Water heated up or cooled down throughout the 

WDN gives information about its path from the source to the place of measurement.  

We present a method that combines hydraulic and temperature simulations and analyses differences 

with actual measurements from a real WDN to assess its potential to identify unknown and known 

valve statuses and locations. The method was evaluated using a semi-synthetic example as well as a 

real case study. The semi-synthetic example, with temperature measurements assumed known at all 

nodes in a DMA, was used to evaluate the pros and cons of various GA set-ups. The real case study 

applied the method to a transportation network with known input and output flows and pressures, as 

well as temperature at selected locations. The status and location of selected valves were tested in the 

field and checked against the obtained modelling results. 

2 Methodology 

The proposed method was divided into the following four steps (Figure 1):  

1) Compilation of hydraulic and temperature input data, including information on the location 

and status of valves and the pipe network. 

2) Calibration, based on data from 1) of a combined hydraulic and temperature model of the 

WDN. 

3) Evaluation of discrepancies between real and simulated results.  

4) Updating utility information about their WDN. 

Hydraulic and water temperature models were simulated in EPANET (Rossman, 2000) using the 

multi-species extension EPANET-MSX (Shang et al., 2007). Preliminary network operations and 

input files were modified through the EPANET-Matlab Toolkit (Eliades et al., 2016). We performed 

most simulations on a high-performance computing cluster with a maximum of 120 MSX simulations 

running in parallel to reduce the computational time needed for the GA to converge. We used the 

MATLAB GA function based on mixed integer optimization (Deb, 2000; Deep et al., 2009).  
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2.1 Temperature modelling 

In WDN temperature models, the change in the water temperature over time can be described by the 

following expression (Blokker and Pieterse-Quirijns, 2013): 
𝑑𝑇𝑤

𝑑𝑡
=

2𝐾𝑝

𝐶𝑝𝜌𝑟𝑖
(𝑇𝑤 − 𝑇𝑠), (1) 

where Tw is the water temperature [ºC] and Ts  the undisturbed soil temperature [ºC], i.e. the location 

closest to pipe burying depth where the soil temperature is unaffected by the heat transfer between 

soil and pipe. cp is the heat capacity of water [J/kg/K],  is the density of water [kg/m3] and ri is the 

inner radius of the analysed pipe [m]. Kp [W/m2/K] is the heat transfer coefficient that defines the 

overall resistance in heat conduction between water and the surrounding soil. Kp is subject to the 

major differences in the applied temperature models in the literature (Blokker and Pieterse-Quirijns, 

2013; De Pasquale et al., 2017; Hubeck-Graudal et al., 2019). Here we used the Hubeck-Graudal 

model (Hubeck-Graudal et al., 2019), where the thermal resistance of the surrounding soil (Rs) in the 

shape factor model (De Pasquale et al., 2017) was modified to account for a fictitious soil layer H: 

𝐾𝑝 = (𝑅𝑝 + 𝑅𝑤 + 𝑅𝑠)−1 = (
ln (

𝑟𝑜
𝑟𝑖

) 𝑟𝑖

𝜆𝑝𝑖𝑝𝑒
+

1

𝑎
+

ln (
2𝐻
𝑟𝑜

) ∗ 𝑟𝑖

 𝜆𝑠𝑜𝑖𝑙
)

−1

 (2) 

Rp and Rw account for the thermal resistance between the pipe wall and flowing water, ro [m] is the 

outer radius of the analysed pipe, and λpipe and λsoil are the thermal conductivity [W/m/K] of the pipe 

material and surrounding soil, respectively. Moreover, H [m] is defined as an additional soil layer, 

correcting for the convective boundary resistance at the soil surface (Kvisgaard and Hadvis, 1980):  

𝐻 = 𝑧 + φ𝜆𝑠𝑜𝑖𝑙 (3) 

With φ describing a correction factor equal 0.07 [K·m2/W]. The soil resistance term Rs is based on 

the assumption that the height z [m] of the soil layer above the buried pipe (measured from the centre 

of the pipe) is larger than the inner diameter. a [W/m2/K] is the convective heat transfer coefficient 
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Figure 1. Overview of the four-step valve status identification process. GA = genetic algorithm; SCADA = 

Supervisory control and data acquisition. 
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between the pipe wall and water. This convective heat transfer coefficient can be determined as 

(Cengel, 2003): 

𝑎 =
𝜆𝑤𝑎𝑡𝑒𝑟𝑁𝑢

2𝑟𝑖
, (4) 

where λwater [W/m/K] is the thermal conductivity of the water and the Nusselt number Nu [-]. Nu 

depends on the flow conditions in the WDN and is approximated by the Colburn equation (Cengel, 

2003): 

𝑁𝑢 = 0.023𝑅𝑒0.8Pr1/3, (
0.7 ≤ 𝑃𝑟 ≤ 160

𝑅𝑒 > 10,000
), (5) 

where Re and Pr are the Reynolds Number and Prandtl Number, respectively. Additional information 

on the computation of Re, Pr and temperature models, i.e. undisturbed soil (Blokker and Pieterse-

Quirijns, 2013), shape factor, De Pasquale (De Pasquale et al., 2017) and Hubeck-Graudal model can 

be found in the supporting information (SI) A. There, a parametric analysis, inspired by the work of 

De Pasquale et al. (2017), is used to discuss differences in choice of temperature model. In SI B, the 

effect of different selected parameters on the Hubeck-Graudal model is discussed.  

2.2 Reducing the valve search space 

Our study considered fully opened or closed isolation valves that control the pipe flow. In the WDN 

model, the number, location and status of all valves were assumed to be unknown, i.e. a valve was 

assigned to each pipe segment resulting in a total of n valves. Next, we identified k valves where 

closing the pipe segment had no impact on the WDN model (see next paragraph) or would disconnect 

users or parts of the network from a water source. This filtering reduced the total ‘valve search space’ 

to n-k valves. We divided this valve search space reduction process into three categories: ‘dead ends’, 

‘source disconnection’ and ‘valve clustering’ (Figure 2). It must be noted that, when a utility has a 

good knowledge of its valves, n should simply equal the known number of valve locations in the 

network.  

 
a) No. of valves equals no. of pipes (8 valves). b) Identified valves during search space reduction. c) Reduced valve search space (3 valves). 

Figure 2. Example of reducing the search space for valve status identification in a water distribution network. 

The shown clusters represent an example of how a given proximity threshold leads to clustered valve segments.  

2.2.1 Dead ends 

Valves leading to ‘dead end’ segments of a WDN with no water flow have no impact on the surveyed 

WDN model parameters during calibration. Dead ends were removed from the valve search space 

(Figure 2) based on the topology of the WDN model and defined demands at consumers/sources. 
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2.2.2 Source disconnection 

Valves that would potentially disconnect consumers from a water source were also filtered from the 

search space (Figure 2), since this would have been reported by the consumers.  

2.2.3 Valve clustering and sensitivity 

We clustered adjacent pipes of the WDN model, without any nodal demand in between, where the 

closing of each individual valve was assumed to have a little impact on the system in terms of pressure 

and temperature. This is based on a selected maximum proximity as a threshold (Figure 2). A 

pseudocode based on hierarchical clustering and excluding ‘dead end’ as well as ‘source 

disconnection’ segments can be found in SI C. 

2.3 GA set-up 

In the following only the reduced valve search space was taken into account. GAs have been widely 

used in water distribution network optimization (e.g. Savic and Walters (1997)). The GA used an 

initial population of size p, where each individual accounted for a WDN model set-up that stored 

information on whether a valve was closed (0) or open (1). New generations were constructed based 

on the individuals’ fitness values and the selected GA parameters elite count (EC), cross-over fraction 

(CF) and mutation rate (MR). The GA setup used to calibrate a WDN model was sectioned into the 

six steps I–VI (Figure 3).  

 
Figure 3. Concept for the genetic algorithm application to identify closed valves in a water distribution 

network model. 

2.3.1 Constraints and initial population 

The definition of an initial GA individual was subject to two constraints:  

1. No consumers allowed disconnected from a source. 

2. No negative pressure allowed in the hydraulic model simulation. 

The initial population (step I, Figure 3) comprised only individuals that complied with these 

constraints, i.e. only ‘feasible’ solutions. The same two constraints were applied between steps II and 

III (Figure 3). If individuals were deemed infeasible during the GA run, they were assigned a penalty 

value greater than the maximum feasible individual. Two different initial population set-ups were 

generated. In the first set-up, each valve in a population was randomly drawn to be closed on an 

average of x-percent of the time. For example, with x being equal to 5% and an initial p = 500, each 

valve from the search space was closed on average 25 times in the initial population’s 500 WDN 

setups. We refer to this initial population scenario as random. In the second set-up, the initial 
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population was based on the similarity measures (SM) and an associated probability P, and this 

scenario is referred to as weighted. The SM was computed as follows: 

Here, pipes refers to the number of pipes in the reduced valve search space and N describes the total 

number of time steps. Δ𝑇𝑖
𝑝𝑖𝑝𝑒 accounts for the differences in temperature over time between the two 

nodes defining pipe i. Thus, Δ𝑇𝑖
𝑜𝑝𝑒𝑛,𝑝𝑖𝑝𝑒 defines the difference in simulated temperature between the 

starting and ending nodes of pipe i when all valves are open; Δ𝑇𝑖
𝑐𝑙𝑜𝑠𝑒𝑑,𝑝𝑖𝑝𝑒

 stores the simulated temperature 

differences over pipe i when only that particular pipe’s valve has been closed in the network; and 

Δ𝑇𝑖
𝑜𝑏𝑠,𝑝𝑖𝑝𝑒covers the observed temperature differences over pipe i with unknown valve status. An SM 

close to unity represents a higher resemblance of the observed temperature pattern (i.e. with unknown 

valve status) to the one of the closed pipe segment, i.e. the valve is more likely closed. An SM value 

close to zero likely represents an open valve. Based on SM, a probability P for a valve being open or 

closed x-percent of the time in the initial population was computed:  

When generating the initial weighted population, Px was used as a probability for a valve being closed 

or open.  

Having determined an initial population or new generation, a hydraulic simulation was run for each 

individual (step II, Figure 3). If the individual’s output was ‘feasible’, the individual’s temperature 

results were simulated (step III, Figure 3). 

2.3.2 Fitness functions 

Goodness of fit (step IV, Figure 3) was evaluated by a weighted least squares fitness function (see 

e.g. Wu (2009) for additional functions) extended to include terms for the modelled and observed 

pressure and temperature: 

𝐹1 = ∑ [WH  ∑(𝐻𝑖
𝑠𝑖𝑚 − Hi

obs)
2

NH

i=1

+ WT ∑ (𝑇𝑖
𝑠𝑖𝑚 − 𝑇𝑖

𝑜𝑏𝑠)
2

NT,node

i=1

] ,

N𝑡

t=0

 (8) 

where Nt is the number of timesteps, NH and NT,nodes are the number of pressure and temperature 

measurement sites, respectively, 𝐻𝑖
𝑠𝑖𝑚 and 𝑇𝑖

𝑠𝑖𝑚 are the simulated head and temperature, 𝐻𝑖
𝑜𝑏𝑠 and 

𝑇𝑖
𝑜𝑏𝑠 are respectively the observed head and temperature in the network, and WH and WT are the 

weighting factors for the head H and temperature T, respectively. We also propose an alternative 

fitness function that included the temperature difference over a pipe segment instead of the nodal 

temperatures: 

𝑆𝑀(𝑖) =
∑ |∆𝑇𝑖

𝑜𝑏𝑠,𝑝𝑖𝑝𝑒(𝑡)−Δ𝑇𝑖
𝑜𝑝𝑒𝑛,𝑝𝑖𝑝𝑒

(𝑡)|
𝑁

𝑡=1

∑ |Δ𝑇𝑖
𝑜𝑏𝑠,𝑝𝑖𝑝𝑒(𝑡)−Δ𝑇𝑖

𝑐𝑙𝑜𝑠𝑒𝑑,𝑝𝑖𝑝𝑒
(𝑡)|

𝑁

𝑡=1
+∑ |Δ𝑇𝑖

𝑜𝑏𝑠,𝑝𝑖𝑝𝑒(𝑡)−Δ𝑇𝑖
𝑜𝑝𝑒𝑛,𝑝𝑖𝑝𝑒

(𝑡)|
𝑁

𝑡=1

, i = 1,...,pipes (6) 

𝑃𝑥(𝑖) =
𝑆𝑀(𝑖)∗𝑥∗𝑣𝑎𝑙𝑣𝑒𝑠

∑ 𝑆𝑀(𝑖)
𝑝𝑖𝑝𝑒𝑠

𝑖=1

, 𝑖 = 1,…,pipes (7) 
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𝐹2 = ∑ [𝑊𝐻  ∑(𝐻𝑖
𝑠𝑖𝑚 − Hi

obs)
2

NH

i=1

+ WT ∑ (∆𝑇𝑖
𝑠𝑖𝑚,𝑝𝑖𝑝𝑒

− ∆𝑇𝑖
𝑜𝑏𝑠,𝑝𝑖𝑝𝑒

)
2

NT,pipes

i=1

]

N𝑡

t=0

, (9) 

where NT,pipes is the number of pipes with temperature measurements at both vertices. Δ𝑇𝑖
𝑠𝑖𝑚,𝑝𝑖𝑝𝑒

 

represents the temperature differences during simulation between the starting and ending vertices of 

each pipe, similar to that used in equation (6). Closing one incorrect valve can result in high nodal 

temperature differences between simulated and measured values in a large area. In such a case, the 

application of F1 may incorrectly guide the GA to search for closed valves inside the affected area. 

When applying F2, the error of the downstream area may be less affected by valve closure as the 

function is concerned with temperature differences over all pipe segments. However, the temperature 

deviation over the pipe segment with a closed valve should lead to a significantly higher error. F2 

supports the GA in prioritizing the selected pipe segment with doubtful temperature differences. 

3 Case studies 

The method was evaluated in two applications based on a DMA and a transportation WDN model of 

the Danish water utility Novafos, located in the northern Copenhagen area (Figure 4). The WDN 

models were created from a larger model provided by the utility.  

The two model applications differed greatly in terms of data availability and network set-up (Table 

1). In the transportation network (Figure 4a), the drinking water was distributed from two waterworks 

(WW) to ten DMAs and temporarily stored in one elevated tank. A large part of the transport network 

had parallel pipes, almost covering the area from WW1 to Tank, as shown by the dashed close-ups 

(Figure 4a) illustrating examples of the two parallel pipes, including transverse and bypass 

connections. Pressure and flow were measured on a minute-by-minute basis at all points where water 

was entering or exiting the transportation network. Temperature was measured per minute at two 

DMA entries, namely DMA3 and DMA5 of Søndersø DMA (Figure 4b). 

Table 1. Key parameters of the applied water distribution network (WDN) models. P = Pressure; Q = Flow; T 

= Temperature; PE = Polyethylene.  

WDN model name Nordvand transportation network DMA (Søndersø) 

Nodes (junctions/waterworks/tanks) 219 (216/2/1) 413 (413/0/0) 

Metered nodes (inputs/outputs/tanks) 13 (2/10/1) 4 (2/2/0) 

Meter types P, Q, (2 outputs T) P, Q, (2 inputs T) 

Metered input range [m3/hr] 405-510.7 38.5-113 

Data period 11.-17. February 2019 4.-10. March 2016 

Consumers (metered annually) 11 2328  

Annually metered consumption [m3/hr] 0.2 48.9 

Pipes 231 488 

Σ Pipe length [km] 41.2 42.3 

Material Distribution [%] Cast Iron (19), Ductile Iron (1), PE (3), 

Concrete (74), Fibre Cement (3) 

Cast Iron (57), Ductile Iron (4), 

PE (39) 

Shut-off valves 84 298 
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We cleaned the data for anomalies found in the raw data (e.g. illegitimate values) by the 

methodologies described in Kirstein et al. (2019) and removed temperature values below or equal to 

0 ºC. All data sets were averaged to uniform data streams with 5-minute intervals. Whereas real 

measurements were available at all major consumption nodes in the transportation network, the semi-

synthetic DMA model used measured temperature for the inlets DMA3 and DMA5, pressure at 

DMA12 and flows at DMA3, DMA5 and DMA11. In the DMA model, five valves were closed 

(Figure 4b) and a synthetic temperature data set including temperatures at each node of the DMA was 

created to represent the ‘unknown’ valve status. The semi-synthetic data set represented the current 

development of increased temperature collection by smart meters at the end-user. In both case studies, 

the model started with all valves assumed open. The transportation network study compared the 

utility’s actual valve status with the valve status estimated by the GA. After calibration, the valves 

identified by the GA were checked in the field. 

 

 

3.1 GA and hydraulic model parameters 

In both case studies, a one week period was analysed (Table 1). In the DMA case study, only 

temperature data was included in the fitness function. Examples of how the temperature was affected 

in selected nodes over the course of one week by opening all valves vs. closing five valves can be 

found in SI D. The GA was run for the DMA and transportation network case study using a pre-set 

list of parameters (Table 2). We used suggested default EC and CF values for effective integer GA 

(MathWorks, 2018). 

 

Figure 4. Novafos transportation water distribution network model. Lighter valve colours represent a higher 

number of overlapping valves. A close-up of the area around WW2 is illustrated in Figure 10b. WW = 

waterworks; P = pressure; Q = flow; T = temperature. 
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The GA stopped for a ‘perfect fit’ (i.e. fitness value equal 0), after 50 generations, or when the mean 

fitness value was equal to the best fit.  

3.1.1 Fitness function and constraints (transportation network case study) 

The most recent field test of the pressure measurements from September 2018 revealed an offset in 

the range of -1.3 to +3 mWC. As a consequence of these field tests, F1 was changed to account for 

the unknown temporal pressure offsets in the transport network case study by subtracting the median 

of the measured and simulated pressure values, making the fitness function reflect the variance of 

values rather than absolute values: 

𝐹1,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = ∑ [WH  ∑([𝐻𝑖
𝑠𝑖𝑚 − median(𝐻𝑖

𝑠𝑖𝑚)] − [Hi
obs − median(Hi

obs)])
2

NH

i=1

N𝑡

t=0

+ WT ∑ (𝑇𝑖
𝑠𝑖𝑚 − 𝑇𝑖

𝑜𝑏𝑠)
2

NT,node

i=1

] 

(10) 

In the transportation network model, WW2 served as head boundary and its pressure data were raised 

by 0.7 mWC according to the most recently measured offset.  

Owing the on-and-off status of very high pump rates at WW1, the model was very sensitive to 

generating negative pressures in certain set-ups. Consequently, solutions (including negative 

pressure) previously deemed ‘infeasible’ between steps II and III (Figure 3) were accepted. 

3.2 Temperature model parameters 

Soil temperatures measurements were based on measured temperatures from a water sampling 

location with long residence time at the periphery of the Copenhagen WDN (Figure 5). The high daily 

variations seen in the DMA inlet temperatures, up to 2.3 ºC during winter and over 5.5 ºC during 

summer, were a consequence of both the origin of the water and of the water’s retention time in the 

system. Most likely, a high proportion of the water at DMA3 originated from WW1 and Tank (Figure 

5a). Long residence time led to cooling of the drinking water during winter and heating during 

Table 2. GA model set-ups applied in the DMA and transportation network case study. 

Model DMA Transportation network 

Clustering threshold  200 m 500 m 

Initial Population Random; Weighted Random 

p 500; 1000 500 

x [%] 1; 2.5; 5 1; 2.5; 5 

EC [%] 10 10 

CF:MR 9:1; 9.5:0.5 9:1; 9.5:0.5 

Fitness Function Eq. (8); Eq. (9) Eq. (10) 

F, subject to T T; H 

Weights (WT:WH) - 0:1; 1:3; 1:1; 3:1; 1:0 

Total runs 48 30 
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summer before it reached DMA3. The water temperature at DMA5 showed less variation. It is 

expected that most of its water originated from WW2. During a week in April 2016, the temperature 

measured at DMA5 resembled that of DMA3 (Figure 5a), explained by a reduced production in 

WW2. It is likely that this change in operation caused water from WW1 and Tank to enter DMA5. 

 

Samples taken in the analysed period (Figure 5b) suggested constant temperatures for all three water 

sources in the network. The temperature model used average source temperatures (Table 3). The 

temperatures at WW2 and the soil temperature in the transportation network case study were modified 

up to 0.3 ºC (within the sampled temperature range) to improve the overall fit. This modification is 

within the stated thermometer uncertainty of ±0.5 ºC. λsoil was set equal to 2.2 W/m/K based on Danish 

moraine clay measurements (Ditlefsen et al., 2011). 

4 Results and discussion 

4.1 DMA (semi-synthetic case study) 

The valve search space of the DMA set-up was reduced from 488 to 379 pipes. Three out of five 

valves had a SM > 0.75 and were also unknowingly to the GA closed in the model set-up (Figure 6a). 

Furthermore, for a SM value close to zero, multiple valves indicated that they were likely open. Two 

closed valves had an SM of around 0.5, which indicated that, not considering any interactions of 

multiple closed valves, the status of the two valves had little or no impact on the temperature 

distribution over their respective pipes. It appears that the SM gave an initial indication of the correct 

valve status for selected pipe segments and serves to guide the GA towards an improved fit. 

 
Figure 5. Measured water temperatures at DMA3 and DMA5 including samples taken at WW1, WW2 and 

Tank and samples taken at the periphery of Copenhagen water distribution network assumed representative 

for the soil temperature. The analysed period of March 2016 is illustrated in SI D. 
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Figure 6. a) Similarity measure (SM) of a valve being closed (1) or open (0) used to compute an initial 

population. b) The total number of times a valve had been closed during the 24 GA runs of fitness functions 

F1 and F2. 
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Table 3. Parameters applied for simulating water temperature. The mean sample drinking water temperatures 

were applied, except for 1) minimum sampled temperature; 2) temperature was lowered by 0.2 ºC (Section 

4.2.1); 3) max value omitted when computing the mean. 

Parameter Symbol Value Unit Reference 

Temperature at WW1 (Mar-16/Feb-19) TWW1 8.6/9 [ºC] Sampled  

Temperature at WW2 (Mar-16/Feb-19) TWW2 9.41/9.62 [ºC] Sampled 

Temperature at Tank1 (Mar-16/Feb-19) TTank1 7.75/8 [ºC] Sampled 

Undisturbed soil temperature (Mar-16/Feb-19) Tsoil 7.02/73 [ºC] Sampled 

Heat capacity of water [10ºC] cp 4,188 [J/kg/K] Dinçer and Zamfirescu (2016) 

Density of water [10ºC]  999.7 [kg/m3] Dinçer and Zamfirescu (2016) 

Dynamic viscosity of water [10ºC] µ 1.31e-3 [Ns/m2] Dinçer and Zamfirescu (2016) 

Thermal conductivity of cast iron pipes λpipe,CI 45 [W/m/K] Czichos (2000) 

Thermal conductivity of cast ductile iron pipes λpipe,DI 32.4 [W/m/K] DIMG (1990) 

Thermal conductivity of concrete pipes λpipe,C  1.16 [W/m/K] Lauritsen et al. (2012) 

Thermal conductivity of polyethylene pipes λpipe,PE  0.45 [W/m/K] Czichos (2000) 

Pipe wall thickness dwall 1/9·di [m] Hubeck-Graudal et al. (2019) 

Thermal conductivity of the water λwater  0.57 [W/m/K] Dinçer and Zamfirescu (2016) 

Thermal conductivity of the soil λsoil 2.2 [W/m/K] Ditlefsen et al. (2011) 

Burying depth z 1.4+2·dwall [m] Hubeck-Graudal et al. (2019) 
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The development of individual GA runs over their generations can be found in SI E. Figure 6b 

illustrates the total number of times valves were closed based on the best fit in each individual GA 

run for F1 and F2, respectively. Most GAs stopped when there was no more variation in the population, 

meaning that the best fit was equal to the mean fit. As the figure shows, only valve ID 53 was 

identified during less than 50% of the runs. Instead, another valve close to this valve was often found 

to be the best fit (grey bar, ID 51), likely causing the GA to become stuck in a local minimum. The 

remaining four closed valves were correctly identified in at least 58% of all runs, irrespective of 

selected fitness function. Interestingly, the valve with ID 308 was closed in most runs, even though 

it did not show a particularly high SM value (Figure 6a). This is an example of the effect of interacting 

valve statuses. Initially, the valve's SM value close to 0.5 indicated that it was ‘unclear’ for the GA 

whether the valve was open or closed. As the valve was closed in most simulations, it can be argued 

that the closure of this valve only led to significant better fitness values when another valve was 

closed simultaneously. In both fitness functions, only 8 out of 24 runs found the perfect solution. 

Overall, F2 resulted in better fits. Whereas F1 identified the status of 14 valves incorrectly and that of 

87 valves correctly, F2 identified 7 valves incorrectly and 96 correctly (Figure 6b). Valves identified 

incorrectly tended to have high SM values (Figure 6a). The tendency of better F2 vs. F1 results is also 

shown in Figure 7.  

Here, the first row shows the mean best fitness value, based on the various GA runs, and the mean 

percentages of incorrectly and correctly identified valves with F1. The second row illustrates the 

results based on F2. Most importantly, however, Figure 7 indicates that a higher population size and 

an improved initial population (weighted scenario) had a greater influence on the final outcome than 

the selection of F1 or F2. Irrespective of selected fitness function, a better mean final fitness value was 

reached using the weighted population. The mean best fitness value was reduced by 78% and 96% 

for populations of 500 and 1000, respectively with F1, and by 94% and 79%, respectively when 

selecting F2. In terms of wrongly identified valves, F2 seemed to generate better results; however, the 

 
Figure 7. Averaged fitness function values, based on the best fit in various GA scenarios.  
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median of both fitness functions indicated that there were certain outliers in the data set establishing 

the higher means. Also, a falsely identified valve is not immediately bad (e.g. valve ID 51, Figure 6a) 

because this might give the utility a good indication of a location for an unknown closed valve. 

4.2 Transportation network (real case study) 

4.2.1 Model validation 

A tracer analysis conducted in the hydraulic model revealed that close to 100% of the water at DMA5 

originated from WW2 (total distance approx. 2.4 km), which was in accordance with the utility’s 

understanding of the system; thus DMA5 was a good location to illustrate the simulated vs. observed 

temperature (Figure 8). First, the temperature was simulated including the mean sampled WW2 

temperature (Figure 8a). Next, we re-simulated the temperature at DMA5 by having lowered the 

source temperature of WW2 by 0.2 ºC, thus improving the overall fit (Figure 8b). This was assumed 

 
Figure 8. Measured vs. simulated drinking water temperature downstream at entry DMA5 based on varying 

λsoil and Tww. The figures show 1) the effect of only varying the source temperature at WW2; 2) the maximum 

temperature deviation by including the λsoil range of 1.1–2.9 W/m/K (inner shaded area around model 

temperatures) based on measured variations in the λsoil of moraine clay (Ditlefsen et al., 2011) including Tsoil 

listed in Table 3; and 3) the maximum temperature deviation by varying the Tsoil ±1 ºC and the soil 

conductivities between 1.1–2.9 W/m/K (outer shaded area around model temperatures). 
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to be within the possible boundaries of the real water temperature at the waterworks, as the sampled 

source temperature had an uncertainty of ±0.5 ºC. The figure displays some of the uncertainty likely 

related to soil temperature and conductivity in the temperature model by showing temperature bands 

for ranges of Tsoil ±1 ºC and likely variations in the λsoil of moraine clay between 1.1 and 2.9 (Ditlefsen 

et al., 2011). 

Regardless of selected model parameters, the simulated temperature does follow the overall pattern 

of temperature change at DMA5 (Figure 8a).  

4.2.2 GA results 

When looking at the individual weighting scenarios, only small variations existed between the best 

fit value and identified valves. For example, in the scenario with a pressure weight equal to 100%, 

runs 2–6 achieved similar best fits and all five runs indicated that three valves should be closed (Table 

4). Whereas valve ID 18 and 87 appeared in all five best fits, the third ID varied, only marginally 

improving the overall fit. An explanation could include a too loose clustering, including valves at 

close range whose change in status had a low but still improving impact on the fitness function. Future 

implementations should assess the sensitivity and refine the identified results, to highlight which 

valves have a clear effect on the overall fitness function and which could be excluded from the GA 

analysis, e.g. as done by Do et al. (2018).  

The best fit for DMA3 (run 28), when using a weighting factor that only considered the temperature 

data (Table 4), is shown in Figure 9 and termed calibrated. Regardless of which valve settings were 

used, the simulated temperature for DMA3 did not seem to match the overall pattern of the measured 

temperature as well as in DMA5 (Figure 8). However, compared to the original settings by the utility 

(termed utility) or all valves being open (all open) the new temperature profile was improved (Figure 

9). Up to now, it had been the understanding of the utility that all water at DMA3 originated from 

WW2, as their valve setting utility indicated. Our results indicated that most water at DMA3 

originated from WW1 and Tank (Figure 5a), which was partly confirmed by the calibrated GA 

results, closing valves that connected DMA3 with WW2. Also, the head in the section no longer 

followed the same pattern as when using the standard valve settings (Figure 9). 

The valve search space of the transport WDN model was reduced from 231 to a total of 106 valves. 

Additional information about this reduced search space can be found in SI F. The best fits of all 

individual GA runs revealed great variation and uncertainty in the valves identification (Table 4). A 

total of 41 different valves were closed in 30 different runs. Some valves, e.g. ID18, however, 

appeared in 4–6 best fits regardless of weighting scenario (i.e. WT:WH). A higher weighting of the 

temperature model also led to a higher number of closed valves. This could be explained by the fact 

that the temperature model was capable of identifying closed valves that cannot be identified when 

analysing the pressure alone. On the other hand, it is likely that the temperature model tried to improve 

its fit by closing selected valves that had a small but beneficial effect on the temperature simulation 

and thus fitness function, which was not seen when using a high pressure weighting factor. 
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Temperature measurements at DMA3 indicated that a large proportion of the water originated from 

Tank, as the temperature was slightly off the tank’s boundary condition of 8 ºC for long periods 

(Figure 9). Solely calibrating with pressure data did not lead to a correct simulation of the water 

origin. Modelling and use of temperature can add an extra dimension to the valve search process and 

help utilities to increase the understanding of their water distribution system. Future studies should 

explore the possible high variation in the tank’s outlet temperature indicated by the two temperature 

samples from the tank (Figure 5b).  

Table 4. Individual GA calibration results of transport WDN model. The generation column displays the 

generation when the GA reached the best fit the first time before reaching the stopping criteria. Bold valve IDs 

highlight valves closed in the utility model. x = initial percentage closed valves; CF = cross-over fraction; MR 

= mutation rate; WT = temperature weighting factor; WH = pressure head weighting factor; FT = best fit of 

temperature values; FH = best fit of pressure values. 

Run  x 

[%] 

CF:MR  

[%] 

WT:WH  

[%] 

Generation No. closed valves 

(open:closed in utility 

model) 

Closed valves 

[ID] 

Best fit (FT:FH) 

1 1 90:10 0:100 15 5 (0:5) 16, 28, 31, 56, 87 10004 (2655:10004) 

2 1 95:05 0:100 6 3 (1:2) 18, 79, 87 8846 (4886:8846) 

3 2.5 90:10 0:100 7 3 (1:2) 18, 79, 87 8846 (4886:8846) 

4 2.5 95:05 0:100 4 3 (1:2) 18, 35, 87 8846 (4886:8846) 

5 5 90:10 0:100 8 3 (1:2) 18, 77, 87 8846 (4886:8846) 

6 5 95:05 0:100 7 3 (1:2) 18, 51, 87 8846 (4886:8846) 

7 1 90:10 25:75 12 5 (0:5) 16, 28, 31, 76, 87 8167 (2655:10004) 

8 1 95:05 25:75 13 6 (1:5) 16, 28, 31, 60, 70, 87 8167 (2655:10004) 

9 2.5 90:10 25:75 12 5 (1:4) 18, 23, 87, 102 7834 (4778:8853) 

10 2.5 95:05 25:75 18 4 (1:3) 8, 18, 87, 103 7839 (4479:8859) 

11 5 90:10 25:75 13 4 (1:3) 18, 67, 79, 87 7834 (4778:8853) 

12 5 95:05 25:75 20 5 (2:3) 7, 18, 87, 102 7856 (4886:8847) 

13 1 90:10 50:50 6 3 (0:3) 16, 31, 36 6234 (2274:10194) 

14 1 95:05 50:50 8 4 (1:3) 16, 18, 31, 45 6216 (2259:10171) 

15 2.5 90:10 50:50 10 4 (1:3) 16, 31, 32, 105 6234 (2274:10194) 

16 2.5 95:05 50:50 13 4 (1:3) 16, 18, 31, 76 6216 (2258:10174) 

17 5 90:10 50:50 16 5 (1:4) 16, 18, 31, 85, 86 6215 (2259:10172) 

18 5 95:05 50:50 17 7 (3:4) 16, 18, 31, 60, 86, 91, 93 6215 (2259:10171) 

19 1 90:10 75:25 21 4 (1:3) 16, 18, 31, 76 4237 (2258:10174) 

20 1 95:05 75:25 12 5 (2:3) 16, 18, 31, 60, 91 4237 (2258:10174) 

21 2.5 90:10 75:25 7 4 (1:3) 16, 18, 31, 70 4237 (2258:10174) 

22 2.5 95:05 75:25 10 4 (1:3) 16, 18, 31, 56 4237 (2258:10174) 

23 5 90:10 75:25 17 6 (2:4) 16, 18, 22, 31, 32, 75 4237 (2259:10171) 

24 5 95:05 75:25 19 6 (2:4) 16, 18, 22, 31, 60, 75 4237 (2259:10171) 

25 1 90:10 100:0 13 6 (2:4) 16, 17, 18, 34, 64, 106 294 (294:214850) 

26 1 95:05 100:0 21 6 (1:5) 28, 35, 40, 75, 94, 97 1682 (1682:28361) 

27 2.5 90:10 100:0 18 7 (3:4) 15, 16, 17, 18, 24, 63, 64 294 (294:214850) 

28 2.5 95:05 100:0 20 8 (4:4) 15, 16, 17, 18, 24, 34, 60, 64 294 (294:214850) 

29 5 90:10 100:0 26 8 (4:4) 15, 16, 17, 18, 24, 32, 64, 90 294 (294:214850) 

30 5 95:05 100:0 15 7 (3:4) 16, 18, 60, 64, 70, 93, 104 297 (297:214846) 



Paper III, page 17 of 32 

 

4.2.3 Testing in the field 

Valves identified as closed in more than 50% of a weighting scenario (Table 4), i.e. more than 3 

times, were considered for further analysis (Figure 10a). The three valves with ID 7, 15 and 93 were 

located in the same ‘valve station’ and achieved these conditions as a group. Sectioning the parallel 

pipes running between WW1 and Tank (Figure 4a) into six groups, depending on their orientation 

(west or east) and location between the transverse connections, led to two additional valve groups 

achieving the 50% closures, i.e. groups TW.1 and TW.2 (Figure 10a). In reality, there were no valves 

located in TW.1 and TW.2 and this could indicate that the model tried to compensate for unknown 

model uncertainties. 

 
Figure 9. Temperature and head at DMA3 modeled for three valve scenarios. All valves open (green); a 

calibration with a weighting factor of 100% temperature measurements (blue); with the utilities knowledge of 

opened and closed valves (yellow); and the measured temperature at the location (black). Also, the measured 

and modelled head at the location are shown in the lower figure.  

 

 

 
(a) Valves with high occurrence number during optimization. (b) Simplified area at WW2. 

Figure 10. (a) The total occurrence of valves that have been closed at least once in more than 50% of the time 

of a given weighting scenario. (b) A simplified version of the network around valve 18, 64 and 87. 
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The valve status identification process (Table 5) highlighted valves with uncertain status and guided 

the utility to locations that needed further maintenance and investigation and where the model had 

clear discrepancies in relation to measured data. 

In particular, the field results from valves ID 18, 64 and 87 (Table 5) could explain some of the 

modelling results (Figure 10b). For example, when closing valve ID 64, the simulated temperature at 

valve DMA3 resembled, to a higher degree, the temperature related to a long residence time. This 

was also seen in the real measurements. However, with the GA evaluations only considering pressure 

optimization, valve 64 was not closed and most of the water at DMA3 was simulated to originate 

from WW2 with a simulated temperature incorrectly closer to the waterworks temperature than found 

by measurement. The valve status calibration process of the transport WDN might have suffered from 

the missing GIS information that was revealed during field testing of the valves. Further studies 

should explore additional factors and parameters not considered here, for example partially closed 

valves, wrong diameters, or missing pipe connections that might affect the results. 

4.3 Current and future implications of temperature modelling and valve testing 

Analysis of the temperature data and linked calibration process revealed that temperature data can be 

used to increase understanding of the WDN. The temperature profile of Figure 5a reveals the origin 

of the water, which is not obvious from pressure and flow measurements only. The additional value 

of temperature data and modelling was particularly true in the transportation network case study, 

where pressure measurements had not been calibrated for a long period. As concluded in Walski et 

al. (2014), the quantity and in particular quality of the data determine the success of the GA for 

optimal valve status identification.  

Danish WDNs tend to have large diameters, resulting in very small head losses throughout the 

network. Here, partially and fully closed valves, or leakage only have minor effects on the pressure. 

Table 5. Summary of valve field testing. 

Valve ID Closed Open Locked-in Inaccessible Information 

7, 15, 93 (X)    All bypasses and valves, part of the utility’s GIS system, no longer 

exist in reality. 

16   X  Reported faulty. 

17    X This valve could not be tested, but additional valves not reported in 

the GIS system were visible around the area, being part of the 

parallel running pipes. 

18  (X)   The technician was not sure whether the valve had been open or 

closed. 

31    X  

64   X  At this location a ‘valve station’ was discovered, including two 

valves part of the GIS system (Valve ID 62 and 64, Figure 10b). 

Both valves contained a bypass with an additional valve not part of 

the GIS system. Valve ID 64 including the bypass valve were 

reported faulty.  

87    X Heavy vegetation. 
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Our study showed that when including a temperature model, the valve status identification process 

was improved, as additional critical locations were identified that otherwise were overlooked when 

solely using pressure data. Further studies should analyse to what extent temperature data can be used 

together with pressure and flow measurements to improve the detection of leaks as well as partially 

and fully closed valves.  

Several uncertainties in the temperature model were not assessed in this study. For example, all 

boundary temperatures were assumed to be constant, but would have increased the validity of the 

model outcome if the temperature input was measured. Also, the soil temperature and the conductivity 

of the soil and pipe materials were likely to vary, e.g. depending on location and type of (road) 

surface, but were applied in a simplified manner. This parameter uncertainty is of high importance. 

Zlatanovic et al., (2017) conducted a sensitivity analysis by varying the input parameters of a 

domestic drinking water temperature model, similar to those of the WDN temperature models, by ± 

10%. Their analysis revealed that parameters representing the outer pipe surface resistance and the 

ambient (soil in WDN) and inlet temperatures had the largest influence on the model output. 

Nevertheless, the temperature modelling in our study showed that it has potential in the fields of water 

distribution network operation, maintenance and design.  

5 Conclusion 

We extended a WDN model with a temperature model in order to utilize temperature data for model-

based identification of valve status and location. A GA was applied to search for the optimal valve 

status by minimizing a fitness function dependent on the difference between real and simulated 

pressure and temperature data. The method was evaluated by two case studies. In the first semi-

synthetic case study, five valves were closed and we assessed two fitness functions that considered 

the nodal temperature difference and the temperature difference over all pipes, respectively. Each 

function was assessed in 24 different set-ups and a best fit was found in 8 runs, independent of fitness 

function. The second fitness function resulted in better outcomes, where 96 out of 120 possible closed 

valves were identified. Moreover, it was found that a larger population size and a weighted, instead 

of random, initial population had a greater impact on the final outcome than modification of the fitness 

function. In the second real case study, a transportation network with temperatures measured at two 

locations revealed that the water is distributed or mixed differently than anticipated by the utility. 

Having included the temperature model during the calibration process revealed critical locations not 

found when solely using pressure data. Field testing of valves, identified by the calibration process, 

revealed various valves that were unknown to the utility, had doubtful status or were not accessible. 

The study revealed that the quality and quantity of data were the most restraining factors, challenging 

the interpretation of the results. The analysis of temperature data and the application of the 

temperature model showed great promise as an add-on in the field of water distribution network 

modelling, and as a tool for water utilities to increase their knowledge of their water distribution 

systems.  
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A. Temperature models 

The undisturbed soil model (Blokker and Pieterse-Quirijns, 2013) takes the thermal resistance be-

tween the pipe wall (Rp) and the flowing water (Rw) into account: 

𝐾𝑝,1 = (𝑅𝑝 + 𝑅𝑤)
−1 = (

𝑑𝑤𝑎𝑙𝑙

𝜆𝑝𝑖𝑝𝑒
+

1

𝑎
)
−1

, 
(1) 

where λpipe [W/m/K] is the thermal conductivity of the pipe material, dwall [m] the pipe wall thickness 

and a [W/m2/K] the convective heat transfer coefficient listed in the main paper. The convective heat 

transfer coefficient requires the computation of the Reynolds (Re) and Prandtl (Pr) numbers (Cengel, 

2003): 

𝑅𝑒 =
𝜌𝑣𝐿𝑐
µ

, 
(2) 

where  [kg/m3] is the density of the water, [m/s] the velocity of the water, µ [kg/m/s] the dynamic 

viscosity of the water and Lc [m] the characteristic length (hydraulic diameter) of the pipe. Moreover, 

Pr is computed as (Cengel, 2003): 

𝑃𝑟 =
µ𝐶𝑝

𝜆𝑤𝑎𝑡𝑒𝑟
, 

(3) 

where Cp [J/kg/K] is the specific heat of the water and λwater [W/m/K] the thermal conductivity of the 

water. De Pasquale et al. (2017) modified the undisturbed soil model by including a term for the 

thermal resistance of the surrounding soil, Rs, and changed the resistance of the pipe wall to account 

for a cylindrical shape, termed the shape factor model:  

𝐾𝑝,2 = (𝑅𝑝 + 𝑅𝑤 + 𝑅𝑠)
−1 = (

ln(
𝑟𝑜
𝑟𝑖
)𝑟𝑖

𝜆𝑝𝑖𝑝𝑒
+

1

𝑎
+

2𝜋𝑟𝑖

𝜆𝑠𝑜𝑖𝑙𝑆
)

−1

, 

(4) 

where ri [m] and ro [m] are the inner and outer radiuses of the pipe, respectively, λsoil [W/m/K] is the 

thermal conductivity of the surrounding soil, and S is the conduction shape factor of the pipe as de-

scribed in Aziz (2003): 

𝑆 =
2𝜋

cosh−1 (
𝑧
𝑟𝑜
)
, 

(5) 

where z [m] is the burying depth of the pipe. Also, De Pasquale et al. (2017) took into account the 

disturbance caused by the pipe to the surrounding soil (Krarti and Kreider, 1996), termed the De 

Pasquale model:  

𝐾𝑝,3 = (𝑅𝑝 + 𝑅𝑤 + 𝑅𝑠)
−1 = (

ln(
𝑟𝑜
𝑟𝑖
)𝑟𝑖

𝜆𝑝𝑖𝑝𝑒
+

1

𝑎
+

ln(
𝑙+𝑟𝑖+𝑑𝑤𝑎𝑙𝑙
𝑟𝑖+𝑑𝑤𝑎𝑙𝑙

)𝑟𝑖

𝜆𝑠𝑜𝑖𝑙
)

−1

, 

(6) 

where dwall [m] describes the pipe wall thickness and l [m] describes a fictitious soil layer thickness 

increasing the thermal resistance: 

𝑙 =
√
(
𝜆
𝜌𝑐𝑝

)
𝑠𝑜𝑖𝑙

𝜔
 

(7) 
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Here, cp,soil  is the heat capacity of the soil [J/kg/K], soil the density of the soil [kg/m3] and ω the 

angular frequency [s-1] of a sinusoidal function describing the soil temperature. In De Pasquale et al. 

(2017) this model was assumed to be superior to the shape factor model, as it was capable of incor-

porating the delay between a pipe’s heat flux and the ambient temperature. Hubeck-Graudal et al. 

(2019), however, found that the shape factor model produced similar results to the De Pasquale 

model.  

A.1 Parametric analysis 

A parametric analysis was conducted to highlight major differences in the four temperature models: 

undisturbed soil model, shape factor model, De Pasquale model and Hubeck-Graudal model. In the 

analysis, a simple water distribution network (WDN) model was applied consisting of one pipe sup-

plying water to a single consumer. Inspired by the work of De Pasquale et al. (2017), the hydraulic 

model parameters used in all four temperature models are summarized in Table A-1. 

Table A-1. Model set-up parameters, inspired by De Pasquale et al. (2017). For examples of thermal conduc-

tivity of selected pipe materials and soils see Czichos (2000) and Blokker and Pieterse-Quirijns (2013). Ex-

perimental volumetric heat capacity based on Pagola et al. (2017). 

 

  

Parameter Symbol Value Unit  

Inlet temperature Tinlet  12 ºC  

Soil temperature Tsoil 5.71 ºC  

Flow/demand Q 0.01 m3/s  

Pipe length L 1000 m  

Pipe Diameter D 0.1 m  

Pipe burying depth z 1.5 m  

Thermal conductivity of cast iron λpipe 45 W/m/K  

Thermal conductivity λsoil  1.89 W/m/K  

Volumetric heat capacity of soil ·cp 2.61 MJ/m3/K  

Angular frequency ω 1.99E-07 s-1  

In the parametric analysis, the effect of changing a set of pipe materials, diameters and flow values 

vs. an increasing pipe length is analysed according to the values listed in Table A-2. 

Table A-2. Parametric analysis of water temperature models based on varying pipe material, pipe diameters 

and flow, where Tinlet = 12 ºC and Tsoil = 5.71 ºC. Inspired by De Pasquale et al. (2017). For assumptions on 

remaining model parameters see Table A-1. 
  

Parameter set-up Pipe material [W/m/K] Diameter [mm] Flow [L/s] Soil material [W/m/K] 

(a) Pipe material Cast iron: 45; polyethylene: 0.4 100  10  1.89 

(b) Pipe diameter Cast iron: 45 200; 500 10  1.89 

(c) Flow Cast iron: 45 350 25; 75 1.89 

(d) Soil material Cast iron: 45 100 10 1;4 
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Figure A-1 and Figure A-2 display the simulated water temperature based on different pipe set-ups 

(Table A-2). The simulated temperature differs significantly only between the undisturbed soil model 

and the remaining three models. The undisturbed soil model reaches the soil temperature significantly 

faster, because a term for the thermal resistance of the surrounding soil is missing. The figures also 

show that it can be assumed that modelling differences obtained from the three remaining models can 

be assumed to be negligible. 

(c
) 
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w
, 

Q
 

  

Figure A-1. Temperature profile of four different temperature models based on different set-ups, inspired by 

De Pasquale et al. (2017). For individual parameters of each set-up, see Table A-2. 
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Figure A-2. Temperature profile of four different temperature models based on different set-ups, inspired by 

De Pasquale et al., (2017). For individual parameters of each set-up, see Table A-2. In (d), no λsoil is included 

in the undisturbed soil model. 

 

B. Effect of individual parameters on Hubeck-Graudal model 

In this paper, the Hubeck-Graudal model was used for simulating the WDN water temperature. Re-

gardless of the selected temperature model, a substantial knowledge about the real WDN and the soil 

environment of the WDN is required to achieve an accurate WDN temperature model. Examples 

include data about the pipe characteristics, such as burying depth, material, inner and outer diameter, 

thermal conductivity and the temperature of the surrounding soil. We applied the Hubeck-Graudal 

model on a test set-up (Table A-1) with one pipe supplying water to a single consumer. Based on this 

set-up, the effect of varying three selected parameters (λsoil, λpipe and d) vs. the soil temperature on the 

outlet water temperature is illustrated in Figure B-1. Similar to Zlatanovic et al. (2017) (who assessed 

a domestic water temperature model), the analysis revealed that the thermal resistance of the sur-

rounding soil, Rs, represents between 80% and 99% of the overall thermal resistance, depending on 

whether PE (0.45 W/m/K) or cast iron pipes (45 W/m/K) were applied.  

 
Figure B-1. Water temperature variation in the Hubeck-Graudal model, based on varying soil temperature and three 

parameters: soil conductivity (λsoil), pipe conductivity (λpipe), and pipe diameter (d). Standard test set-up parameters are 

listed in Table A-1. 
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Only pipes having a low thermal conductivity (<5 W/m/K, such as PE or concrete pipes) have a major 

insulating effect and thus decreasing the rate of cooling of the water (Figure B-1a). Figure B-1b shows 

that an increase in soil conductivity, λsoil, also leads to a lower water temperature. Figure B-1c shows 

that increasing diameters lead to a slight decrease in water temperature, as the retention time of the 

water increases.  

C. Valve search space reduction 

All valve search space reduction approaches introduced in the main paper utilize simple graph theory. 

In short, the network topology can be represented as an undirected graph G = (V,E). G consists of a 

set V of vertices v (nodes) and set E of edges e (links). Each edge is attached to two vertices. The 

degree deg (v) of a vertex defines the number of ingoing and outgoing connections from a vertex. For 

example, automatically, all edges e containing a vertex with deg(v) = 1 cannot be fully closed if the 

vertex represents a consumer, as it would otherwise disconnect the node from the network. In some 

cases, we applied the breadth-first search (BFS) algorithm (e.g. Cormen et al. (2003)) to traverse a 

graph from a certain vertex until a stop criterion was met. In the valve clustering process, we applied 

agglomerative hierarchical clustering. For additional information see, for example, Tan, Steinbach, 

and Kumar (2006). The pseudo code of our implementation of ‘valve clustering’ segments is listed 

in Table C-1.  

 

Table C-1. Pseudo code/algorithm for ‘valve clustering’ segments.  

Require: net – network model; Vd – the index of valves/pipe segments not closable as being deemed ‘dead end’; Vs – the 

number of valves/pipe segments not closable as being deemed in the category ‘source disconnection’; thresh – proximity 

threshold for clustering. 

Ensure: Vc – the number of valves/pipe segments not closed during calibration as being deemed in the category ‘valve 

clustering’ 

Based on net, establish the graphs G  = (V,E) with V and E representing the nodes and links of net, respectively. 

Remove all edges e from G, being marked as not closable in Vs and Vd and all edges linked to vertices v with an assigned 

demand. 

Store the deg(v) of G in M. 

Remove all edges e from G that are not connected to at least one vertex with deg(v) = 2 

Separate G at each vertex v where M(v) > 2. 

G consists now of multiple connected graph components cgc (only straight line segments). 

for each cgc do 

 run hierarchical agglomerative clustering with the minimum proximity technique between vertices. Clusters 

are formed at heights ≤ thresh 

 Remove the most central edge from the cluster (this edge is used for valve calibration) 

 Store the remaining edges from the cluster in Vc 

end do 
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D. Temperature in selected nodes (open vs. closed) 

Figure D-1 illustrates the simulated temperature in six nodes scattered around the network when all 

valves are open (yellow) or five valves are closed (blue) in the district metering area (DMA) case 

study.  

The nodes represent a broad overview of temperature differences observed throughout the DMA net-

work over the course of a week. Some nodes have higher deviations over the entire week, with respect 

to all valves being open and five being closed. This is the case for node A, where a high difference in 

the simulated temperatures with up to 1 degree difference is seen. Other nodes, such as nodes C and 

E, have the largest differences on selected days around and after the 8th of March, respectively. In 

some nodes, such as node D, valve closing has no effect on the temperature profile.  

Figure D-2a shows the measured temperature over the course of 2016 at DMA3 and DMA5. Moreo-

ver, the temperature measured in a week in March 2016 can be seen in Figure D-2b. Here, the soil 

temperature is more or less constant around 7 ºC, used in the DMA case study. 

 
Figure D-1. Simulated water temperature in selected nodes of the DMA model with all valves open (orange) 

and five valves closed (blue). 
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Figure D-2. Measured water temperatures at DMA3 and DMA5 including samples taken at WW1, WW2 

and Tank and samples taken at the periphery of Copenhagen water distribution network assumed representa-

tive for the soil temperature. 

E. Genetic algorithm results 

The mean and median best fitness values based on various initial population scenarios are summa-

rized in Table E-1. 

Table E-1. Average best fitness function value (median in parentheses) based on different initial genetic al-

gorithm population and two different cross over rates. 

Fitness function 1% Random 1% Weighted 2.5% Random 2.5% Weighted 5% Random 5% Weighted 

F1 698.97   (6.94) 128.46 (50.98) 105.18 (44.61) 132.51 (10.47) 446.97 (367.7) 0.00      (0) 

F2 1368.62 (94.79) 51.30   (5.94) 44.40   (5.94) 89.75 (82.85) 397.70 (434.4) 5.94 (5.94) 

Even though the 5% weighted scenario led to the best results in both fitness functions, no clear trend 

in selecting the most suitable initial percentage of closed valves is visible from the scenarios listed in 

Table E-1. The median value indicates that there is a high variability in the results found, depending 

on the cross-over fraction to mutation rate (CF:MR) ratio and population size. Moreover, except for 

the 2.5% random scenario, the weighted scenario tends to have led to better fitness values. 

The best fit development of each individual genetic algorithm (GA) run is summarized in Figure E-

1. Figure E-1a shows the development over each generation based on fitness function F1, while Figure 

E-1b shows that for fitness function F2. Within the first generations, the weighted scenarios converge 

faster towards a lower fitness value than the random scenarios. This can partially be explained by the 
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fact that the weighted scenario has a better initial best fit. Moreover, it should be kept in mind that 

these better starting conditions are based on the computation of 380 simulations required to compute 

the SM values that were needed to generate the initial populations. If time is a constraint, selecting 

the weighted scenario seems to be a better selection than selecting the random approach. 

 

 
Figure E-1. Best fit of DMA model with various genetic algorithm (GA) set-ups; a) shows the GA runs with 

fitness function F1; and b) the GA runs with fitness function F2. CF = Cross-over fraction. MR = mutation rate. 
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F. Example of valve search space reduction 

The reduced valve search space for the transportation case study is summarized in Table F-1 and 

illustrated in Figure F-1. Large parts connected upstream of WW1 have no consumption and can thus 

be removed from the calibration process (i.e. ‘dead ends’). Also, large parts downstream of WW2 are 

branched and can thus not be closed as they will disconnect consumers from a water source. In par-

ticular, pipe segments of the parallel pipes running between WW1 and Tank1 have been clustered 

(Figure F-1).  

Table F-1. Valve search space reduction process.  

Definition Number of valves 

#0 All pipes can be closed 231  

#1 ‘Dead end’ stretches -35 

#2 No source disconnection -59 

#3 Cluster no demand stretches -31 

Total analysed valves in model  106 

 

 

Figure F-1. Pipe segments not used for valve status identification, i.e. segments with no consumption and 

flow (dead ends), disconnecting consumers from a source and stretches clustered based on their proximity of 

500m. 

 

G. Additional results 

Figure G-1 shows the simulated temperature results at DMA5, when all valves are open (green), based 

on the best fit generated during GA calibration (blue) with a weighting of WT = 100 %, the utility’s 

network setup (yellow) and the observation (black). 

Only the valve setting of ‘all valves open’ has a minor effect on the simulated water temperature at 

DMA5 compared to the other two model settings. In terms of the simulated head, all three model set-

ups follow the same pattern. 
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Figure G-1. Temperature and head at DMA5 based on various valve scenarios. All valves open (green); the 

model has only been calibrated with a weighting factor of 100% temperature measurements (blue); with the 

utilities knowledge of opened and closed valves (yellow); and the measured temperature at the location (black). 

Also, the measured and modelled head at the location are shown in the lower figure.  
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Abstract Smart meter temperature data are increasingly collected in water supply systems, but the 

utilities are unaware of potential successful applications. In this study, smart meter consumption and 

temperature data from a district metered area (DMA) in Denmark was analysed for various potentials. 

First, application of a consumption-based filtration method categorized the data into estimates of soil 

and water distribution network temperatures. Soil temperatures deviating highly from the mean 

revealed smart meters with incorrect service line information stored in the utility’s asset database. 

Simulating the temperature throughout the DMA and comparing it with the smart meter temperatures 

showed a good resemblance. One node, however, with a high error, revealed a consumer that was 

incorrectly affiliated to the DMA, which is otherwise not easily identified from common hydraulic 

data or the billing system. Future applications with finer sampling resolutions are expected to reveal 

further potentials of smart meter temperature, e.g. useful within the fields of leakage detection, pipe 

connectivity and valve status identification. 

Keywords: District metered area; Hydraulic modelling; Smart meter; Temperature; Water distribution 

network 

1 Introduction 

Smart meters measuring the consumers’ water consumption and automatically transmitting the data 

to the utility are currently being implemented many places around the world. Temperature data may 

become a valuable ‘by-product’ from smart meters. The temperature measurements are used in the 

computation of volume observations and are thus available for other purposes. Smart meter 

manufacturers advertise the use of temperature data for alarming consumers about the risk of frost, 

and the possibility of being used as a tool for identifying areas with stagnant water owing to higher 

water temperatures (e.g. Rokkjær, 2018). In practice, however, smart meter temperatures are not 

mentioned when identifying benefits of digital metering (Boyle et al., 2013; Monks et al., 2019) and 

utilities are unsure what to do with the collected temperature data (e.g. Blokker, 2019). In Kirstein et 

al. (2019) it was shown that temperature data directly collected from the water distribution network 

(WDN) can have a value in identifying system anomalies, such as incorrect information stored in a 

utility’s asset database, as well as in increasing the understanding of how the water is distributed. 

However, one of the limitations in the study was the limited amount of temperature sensors and low 

spatial distribution of the available data throughout the WDN. Here, smart meter data can play a 

substantial role in closing this gap, as temperature data may be available from each household. 

mailto:jkir@env.dtu.dk
mailto:mryg@env.dtu.dk
mailto:morb@env.dtu.dk
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Unfortunately, smart meter temperatures (Tsmart meter) do not directly represent WDN temperatures, as 

the water temperature is influenced by various factors on its way to the consumer (Figure 1).  

Water stagnates in the flowmeter during times of no consumption and approximates the ambient (e.g. 

indoor) temperature. At the same time, the water inside the service line approaches the surrounding 

soil temperature (Tsoil), which may further be influenced by local features in the area such as 

pavement, vegetation, district heating and urban drainage pipes (Figure 1). However, if the 

consumption is high enough, the water has only spent a brief period inside service lines and home 

connections and could thus be used as a proxy for the WDN temperature (TWDN,obs, Figure 1). A 

common service line of a single-family house has an inner diameter of 33 mm (e.g. Wavin, 2019) and 

an average length of 17 m (Table 1) , thus holding a total volume of around 15 L. According to a 

Danish utility (Vejen Forsyning, 2014), a 5 min shower with a water saving shower head uses between 

30–40 L. Thus, the water inside the service line is replaced more than twice during such an event and 

a smart meter temperature sample should be able to represent Twater,obs (Figure 1) if sampled at the 

right time. Not only the simulation, but also the analysis of the temperature data in itself has many 

potential benefits. For example, during times of no consumption the water temperature in service 

lines approximates the surrounding soil temperature. A sudden demand may push this water volume 

to the meter, and the measured temperature at this point in time may be a good estimate of the soil 

temperature. 

1.1 Potentials of smart meter temperature data 

We suggest to explore the potentials for analysing WDNs based on a heat transfer model by 

comparing measured smart meter temperature samples with simulated temperature values. The 

 
Figure 1. Cross-sectional overview of a water distribution network main connecting a household via a service 

line. External factors (e.g. vegetation, pavement or district heating pipes) affect the local soil temperature. 

WDN = water distribution network. 
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analysis and simulation of temperature data from smart meters may have multiple benefits, 

summarized in the following. 

Water quality. Owing the large number of possible entry points for contaminants, it is challenging to 

monitor water quality of WDNs reliable (Eggimann et al., 2017; Makropoulos and Savić, 2019). 

Temperatures affect bacterial growth in the WDN (Liu et al., 2016) and are of importance when 

selecting preferable locations for water quality audits, as they may indicate areas of stagnant or slow-

flowing water (e.g. Larsen et al., 2017). Moreover, temperatures can affect the generation of 

disinfection by-products (e.g. Kyriakou et al., 2016). Thus, the spatial availability of smart meters 

and temperature samples from each household may improve water quality estimates throughout the 

WDN. 

WDN analysis & asset management. Water temperatures can indicate the origin of the water, 

otherwise not easily seen from flow and pressure data (Kirstein et al., 2019) or requiring exhaustive 

tracer studies. Moreover, temperature data can be used as an additional parameter for calibration of 

WDNs, such as valve status identification where valve closures affect the temperature distribution 

throughout the WDN (Kirstein et al., 2019). Analysis of the smart meter temperature data may reveal 

measurements deviating highly from the majority of samples in an area, for example, useful for 

highlighting wrongful service pipe characteristics (e.g. length or affiliation) and wrongly affiliated 

consumers. 

Water loss management. Unauthorized consumption and leakages increase the demand in areas and 

affect the time the water has spent in the WDN before being consumed. As time is a major factor of 

the resulting heat transfer, discrepancies between simulated and observed temperatures could indicate 

leakage locations as well as unaccounted-for consumers. 

Consumer benefits. Consumers should be alerted in periods of too high temperatures and be advised 

to flush the water at the tap at the next time of usage. Likewise, consumers can be alerted when too 

low temperatures are measured, increasing the consumers’ chance to prevent frost bursts (e.g. 

Rokkjær, 2018)). 

Energy management. Heat pumps deployed in WDNs can be used to extract energy and deliver it to 

heating systems (Blokker et al., 2013; De Pasquale et al., 2017; Hubeck-Graudal et al., 2019). Here, 

smart meter temperature data could, for example, be used to enhance estimates of the heat transfer 

occurring in service lines, potentially advocating for the deployment of heat pumps.  

Data improvement. Accumulated volumes from smart meters, e.g. sampled each full hour, do (most 

of the time) not represent the actual time of consumption, such as samples taken at lower time 

intervals. However, the temperature of the water inside the meter at time of transmission may be used 

as a proxy for indicating how long the water has been standing still since the last time of consumption, 

thus potentially capable of improving knowledge on the actual time of consumption. 

Here, we present a way to use smart meter consumption and temperature data for WDN analysis 

based on data from two DMAs in Utility Brønderslev, Denmark. In this process we 1) categorize 

temperature data into samples representing soil temperatures and WDN temperatures, respectively. 
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2) Simulate the water temperature throughout the DMA and evaluate the simulated values against 

measured smart meter temperatures.  

2 Case study 

The utility of Brønderslev, Denmark, has completed a full smart meter rollout. Two DMAs from this 

utility were selected for detailed analysis (Table 1). DMA1 is located in an urban area with mainly 

single-family houses, whereas DMA2 is located in a rural area with longer distances between 

consumers and agricultural users. Smart meter data is sampled ‘quasi-randomly’ in the utility, as the 

smart meters’ data is transmitted through a custom data network consisting of multiple local cell-

towers, that pick up the meters’ signal and transmit once an hour a single data point for each meter to 

the utility’s database. As samples may reach multiple cell-towers, it is possible for certain smart 

meters to reach sampling resolutions of around 8 samples every hour (Table 1).  

The temperature model is only run in DMA1. The temperature at the DMA1 inlet (Tinlet), pressure 

and flow are measured in a 5 min interval. In the hydraulic model, pressure and Tinlet were used as 

boundary conditions. Moreover, the gap between each smart meter reading was linearly interpolated 

to have uniform sampling resolutions at a 5 min resolution available. Each smart meter consumption 

time series was then bundled in the nearest nodes of the hydraulic model. The hydraulic model was 

run in EPANET (Rossman, 2000). 

3 Method 

3.1 Heat transfer model 

The heat transfer model described in (Hubeck-Graudal et al., 2019) was used for simulating the 

change in water temperature, Twater,sim [ºC], over time, t [s], throughout the WDN: 

dTwater,sim 

dt
=

Kp

cp,water·ρwater·π·ri
2 

·(Twater,sim-Tsoil) 
(1)  

Tsoil describes the undisturbed soil temperature [ºC] at pipe burying depth, cp,water the specific heat of 

the water [J/kg/K], water the density of the water [kg/m3] and ri the inner radius of the analysed pipe 

[m]. This non-transient heat model is implemented in the EPANET Multi-Species eXtension (MSX) 

Table 1. Consumer and network information of two district metered areas (DMAs) in Brønderslev for two 

weeks in August 2018. *Smart meters with single readings were omitted. 

Name DMA1 DMA2 

Smart meters 526 579 

Number of samples 393,979 318,956 

Median annual consumption [L/day]* (Min/Mean/Max) 193 (1/254/6,470) 228 (0/487/22,126) 

Median sampling resolution [min/sample/device]* (Min/Mean/Max) 31 (23/49/4,853) 40 (8/258/6,934) 

Median sampled temperature [°C] (Mean) 24 (25) 20 (20) 

Σ Mains [km] (Mean) 10 (73·10-3) 85 (223·10-3) 

Mains diameter [outer diameter in mm] [%]: ≤80/81-120/>120/Unknown 16/76/8/0 34/59/4/3 

Mains material [%]: PVC/PE/Other  80/14/6 57/37/6 

Service lines [outer diameter in mm] [%] 32/40/50 <5/95/<1 - 

Σ Service lines [km] (Mean per smart meter) 9 (17·10-3) - 
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(Shang et al., 2007). The heat transmission coefficient Kp [W/m/K] is subject to some variations in 

the literature (Blokker and Pieterse-Quirijns, 2013; De Pasquale et al., 2017). We have chosen to use 

the term as described in Hubeck-Graudal et al. (2019): 

Kp=(Rsoil+Rpipe+Rwater)-1= (
ln (

4H
2ro

)

2soil
+

ln (
ro
ri

)

2pipe
+

1

water2ri
)

-1

 

(2)  

With ro being the outer radius of the pipe [m], λsoil and λpipe the thermal conductivity of soil and pipe 

material [W/m/K], respectively and H [m] representing a correction factor for the convective 

resistance at the soil surface: 

H=h+φsoil (3)  

With h being the height of soil [m] above the pipe centre and φ describing a correction factor equal 

0.07 [K·m2/W]. Furthermore, αwater describes the convective boundary coefficient of the water against 

the pipe wall [W/m2/K]: 

water=
λwaterNu

2ri
 

(4)  

When computing αwater, the Nusselt number Nu [-] needs to be incorporated. Based on Janssen and 

Warmoeskerken (1987) cited in Zlatanovic et al. (2017), a stepwise function of Nu for stagnant, 

laminar and turbulent flows was implemented: 

Nu= {
Re < 10

10 < Re ≤2300
Re > 2300

5.8
3.66

0.023·Re0.8·Pr1/3
 

(5)  

With the latter term being the Colburn equation (e.g. Cengel, 2003). This stepwise approach for 

computing Nu was incorporated into EPANET-MSX, with the Reynolds number (Re) computed 

internally by the program. Moreover, the Prandtl number Pr [-] is a temperature dependent term 

(Cengel, 2003): 

𝑃𝑟 =
𝜇𝑤𝑎𝑡𝑒𝑟 · 𝐶𝑝,𝑤𝑎𝑡𝑒𝑟

𝜆𝑤𝑎𝑡𝑒𝑟
 (6)  

With µwater describing the dynamic viscosity of water [kg/m/s] and λwater the thermal conductivity of 

water [W/m/K]. Additional information about the parameters applied in the temperature model of the 

case study network are listed in Table 2. For some parameters in the table, a standard temperature of 

15 ºC was selected as representative water temperature based on the source and smart meter 

temperatures in the case study. This resulted, for example, in a constant Pr value equalling 8.25 (at 

15 ºC) in the heat transfer model. Moreover, to account for EPANET’s kinematic viscosity being 

based on 20 ºC the relative viscosity was changed to 1.13 in EPANET. 

3.2  Categorisation and filtration of temperature data 

3.2.1 Parameter sensitivity 

The required stagnation time for the water temperature to reach the soil temperature in service lines 

was identified by varying heat transfer model parameters (Table 3).  
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3.2.2 Estimating soil temperatures based on smart meter temperatures 

Smart meter temperature data were categorized into soil temperature estimates and WDN 

temperatures. The following filtering rules were established for all smart meter samples, categorizing 

temperature samples as soil temperature estimates, being an important input parameter of the heat 

transfer model (Eq. (1)): 

1. Retention time within service line ≥ x [hrs] 

2. Demand ≥ between y % and z % of estimated service line volume 

3. Sample age ≤ β [hrs] 

It is necessary to estimate the service line volume because the service lines’ exact locations and 

diameters are usually not stored in the utilities’ asset databases. However, in the case study, the 

distance between WDN mains and stop valves was stored in the utility’s asset database (Figure 1). 

Moreover, the GPS coordinates of each home were known, but not the exact smart meter location. 

Thus, service lines were prolonged linearly between stop valves and each home’s GPS coordinates. 

3.2.3 Estimating water distribution network temperatures based on smart meter temperatures 

The following filtering rules were established for categorizing smart meter temperature samples as 

WDN temperature estimates: 

1. Demand ≥ w % of estimated service line volume 

2. Sample age ≤ ω [hrs] 

Table 2. Additional information about parameter selection in applied temperature simulations. 

Parameter Symbol Value Unit Reference 

Dynamic viscosity of water (at 15 ºC) µwater 1.14·10-3 [kg/m/s] Dinçer and Zamfirescu (2016) 

Specific heat of water (at 15 ºC) Cp,water 4,184 [J/kg/K] Dinçer and Zamfirescu (2016) 

Thermal conductivity of water (at 15 ºC) λwater 5.77·10-1 [W/m/K] Dinçer and Zamfirescu (2016) 

Thermal conductivity of polyethylene pipes λPE 4.2·10-1 [W/m/K] Czichos et al. (2014) 

Thermal conductivity of polyvinylchloride 

pipes 

λPVC 2.2·10-1 [W/m/K] Czichos et al. (2014) 

Burying depth h 1.4+ro [m] Hubeck-Graudal et al. (2019) 

Pipe wall thickness rwall 2/9·ri [m] Hubeck-Graudal et al. (2019) 

Outer pipe radius ro ri+rwall [m] Hubeck-Graudal et al. (2019) 

Table 3. Parameter variation used to identify the required stagnation time for the water temperature to reach 

the soil temperature in service lines. 

 Parameter  Unit Variation Information 

Tsoil  ºC 18 ± 30% Estimate of Tsoil variation over summer (e.g. Hubeck-Graudal et al., 2019). 

Tinlet ºC 13 ± 30% Estimate of Tinlet variation during summer. 

λpipe W/m/K 0.42 ± 30% Pipe material conductivity based on polyethylene (Czichos et al., 2014). 

λsoil  W/m/K 2.2 ± 50% Possible soil conductivity variation in area (Ditlefsen et al., 2014; Ditlefsen and 

Sørensen, 2014). 

do m 0.04 ± 30% Typical outer service line diameter. 

di m do·0.8 Typical relationship between inner and outer service line diameter (e.g. Wavin, 2019). 
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3.3 Model evaluation  

To evaluate the performance and resemblance between simulated WDN temperatures and estimated 

WDN temperatures (based on smart meter samples), the root mean squared error (RMSE) was 

computed for each node in the hydraulic model with temperature estimates available. A time window 

was introduced to allow for some variation owing to potential transient heat transfers occurring 

between the water, pipe and soil that are not included in the temperature model. Moreover, the time 

window reduces the impact of sudden drops or rises in temperature potentially leading to misguiding 

RMSE estimates. Such deviations in the timing between simulated and sampled temperatures values 

may occur owing to the method behind smart meter data sampling and linking of the data to a 

hydraulic model.  

Considering a smart meter with hourly measurements, the water consumption between measurements 

can be estimated by linear interpolation (dotted line, Figure 2). The actual time of consumption is, 

however, unknown (solid line, Figure 2). In the example, most of the consumed water between hourly 

readings was actually consumed right after or before sampling and not linearly distributed over the 

entire hour. The simulation does not include this information; thus, at times, the water is consumed 

too early or too late in the hydraulic model. In particular, an increasing number of smart meters 

bundled in the hydraulic model’s nodes may affect this error. This uncertainty decreases and increases 

with finer and coarser sampling resolutions, respectively. Thus, the timestamps of temperature 

samples were allowed to vary ± 1 hr for the computation of the RMSE. The minimum distance 

between measurement and model within this window was used.  

3.3.1 Soil conductivity estimation 

The exact λsoil of DMA1 was unknown, even though a tool by the Geological Survey of Denmark and 

Greenland (Ditlefsen et al., 2014) estimated λsoil to be of 1.8 [W/m/K]. This estimate was based on 

three drills in the nearby area showing that 70% of the soil materials was composed of sand and gravel 

(λsoil of 2.24 [W/m/K]) and 23% silty clay (λsoil of 1.15 [W/m/K]) up to a depth of 25 m. However, as 

these values are based on reference conductivities and the pipe bedding material was unknown we 

allowed λsoil to vary between 1 and 4 by steps of 0.1 [W/m/K]. The hereby identified λsoil with the 

lowest median RMSE was then selected for further analysis. 

  

Figure 2. Linearly ‘estimated’ consumption over time based on two hourly measurements vs. actual 

consumption. 
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4 Results and discussion  

4.1 Raw temperature samples 

For each hour, the median temperature was computed in both DMAs over the course of two weeks in 

August 2018 (Figure 3). In the case of DMA1, Figure 3 highlights a need for filtering the data when 

it should be applied within WDN analyses, as most depicted temperatures represent too high 

temperatures, unlikely to resemble the WDN temperature. As the water is stagnant most of the time 

in service lines or in in-house connections, the median was expected to represent more or less indoor 

temperatures. The results, however, show a clear difference between the two DMAs (Figure 3). This 

might be caused by the installation location of the smart meters in the DMAs. Also, an effect of the 

air temperature on smart meter temperature data is visible. For example, the drop in the daily air 

temperatures after the 8th of August led to a decrease in water temperatures approximately delayed 

by two days. The lag between air temperatures and smart meter temperature may indicate a potential 

heat buffering capacity of the soil (and homes) affecting the smart meter temperatures.  

 

Figure 3. Temperature variation from 1,105 smart meters in two DMAs covering two weeks in 2018 and the 

daily mean air temperature from (DMI, 2019). 

4.2 Categorisation and filtration of temperature data 

4.2.1 Parameter sensitivity 

Figure 4a displays the scenarios (Table 3), where the initial water temperature started at 9.1 ºC and 

approximated a soil temperature of 12.6 ºC. The figure shows that most scenarios reached the soil 

temperature after around t = 2 hr. Figure 4b displays the ratio between water and soil temperature at 

t = 3 hr for eight scenarios (denoted A–H). The two scenarios furthest away from having reached the 

soil temperature (B and D), included the lowest soil conductivity (λsoil = 1.1 W/m/K) and largest 

service pipe diameters (do = 52 mm). This low soil conductivity corresponds to literature findings 

(Ditlefsen et al., 2014), but the true value is still unknown, among other things because at times sand 

and gravel are used as pipe bedding material. However, the largest pipe diameter does not represent 

a typical service line in the area (Table 1), and is only possible for large scale consumers not common 

in DMA1 and DMA2. Thus, the retention time x within service lines needed for soil temperature 

estimates (Rule 1, Sec. 0) was determined to be sufficient at being set to 3 hr. The remaining scenarios 
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with different initial water temperatures as well as soil temperatures resembled the one presented here 

and can be found in the supporting information (SI) A. 

4.2.2 Estimating soil temperature 

The soil temperature was estimated based on smart meter temperature and demand samples in DMA1. 

These soil temperature estimates were then used as model boundary when simulating the water 

temperature throughout the DMA. Soil temperature estimates were obtained according to the rules 

defined in Sec. 0, where an estimate of the service line volume was needed. Based on this uncertain 

information, y and z were set to 20 % and 80 % respectively (Rule 2, Sec. 0) and β to 0.25 hr (Rule 

3, Sec. 0). In total, only 393 samples (< 0.1% of all samples) passed this filtration (Figure 5) of which 

13 samples were clearly lower or higher than the bulk of soil temperature estimates (Figure 5). These 

samples were deemed invalid as a manual inspection of all service lines in the geographic information 

system (GIS) revealed service lines with misguiding information in the utility’s asset database 

(marked orange, Figure 5). Moreover, the blue estimations were located in the only 2-storey houses 

in the DMA with a smart meter in each storey having identical GPS coordinates. Thus, the upper 

storey has an additional in-house connection pipe length not included during filtration. In the 

temperature model, the fitted linear regression line was used as soil temperature. Disregarding the 

before mentioned anomalies, a mean soil temperature of 21.4 °C (median of 21.2 °C) was identified 

with the linear model output decreasing from 22.2 °C to 20.5 °C. The soil temperature in Figure 5 

shows variations not included in the linear fit. The local environment can influence the soil 

temperature differently between the consumers’ homes, for example, owing to pavement, vegetation 

or other pipes in the area (Figure 1). Moreover, sunshine duration and intensity, the exact pipe burying 

depth and the time of sampling may play a substantial role. Soil temperatures underneath a hot 

asphalted road must be expected to be higher than temperatures under a green irrigated lawn. Thus, 

Figure 5 indicates that the effect of local soil temperatures throughout the DMA should be assessed 

to see whether they enhance modelling results. 

 

 

(a) Temperature approaching soil temperature. (b) Ratio of water and soil temperature at t = 3 hr. 

Figure 4. (a) Each line illustrates the change in water temperature of stagnant water in service lines over time 

based on the parameter scenarios listed in Table 3. Here, the initial water temperature was set to 9.1 ºC and the 

soil temperature was set equal 12.6 ºC. (b) Illustrates the water to soil temperature ratio after 3 hours. 

Remaining scenarios from Table 3 are listed in SI A. 
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4.2.3 Estimating water distribution network temperature  

The WDN temperature was estimated based on smart meter temperature and demand samples in 

DMA1. According to the rules presented in Sec. 3.2.3, a very conservative setting of w = 400 % (Rule 

1, Sec. 3.2.3) and a maximum sample age of ω = 0.25 hr were chosen (Rule 2, Sec. 3.2.3) to identify 

WDN temperature estimates. At lower values of w, a marked number of samples were above the soil 

temperature (SI B). This indicates that local soil temperatures might be higher than expected (for 

instance, between 2012 and 2014 the warmest water samples representing soil temperatures in 

Copenhagen were sampled at 20.3 °C (Hubeck-Graudal et al., 2019)) and vary greatly. However, the 

uncertainty about the actual location, length and diameter of service lines may still lead to samples 

not accurately representing WDN temperatures. Finally, the level of detail in the hydraulic model 

may play an important role. The consumption from smart meters is bundled in the smart meters’ 

nearest nodes in the WDN model and not at their actual location. The identified WDN temperature 

estimates are plotted in Figure 6, with less than 0.1 % (n = 378) of samples passing the conservative 

filtration. 

4.3 Model evaluation 

As the actual value of λsoil was unknown, the mean and median RMSE were computed for a range of 

values (Figure 7a). The best median value equal 0.64 °C (mean of 1.03 °C) was found with λsoil = 2 

[W/m/K], being a possible value for the case study area. Using this value of the thermal conductivity 

 

Figure 5. Soil temperature estimates and fitted linear regression model with anomalies (2-storey houses and 

doubtful service pipes) removed.  

 

Figure 6. Water distribution network temperature estimates based on smart meter samples and the measured 

inlet temperature to the district metered area (DMA). Temperatures from two distinct nodes (44 and 64) 

resemble the bulk of temperature estimates, but differ highly when compared with simulated temperatures 

(Figure 7b). 
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of the soil, the temperature was simulated throughout DMA1. The nodal RMSE of this setup is shown 

in Figure 7b. 

 

Three examples of good model fits are shown for the three nodes with ID 18, 24 and 63 in Figure 8. 

In the figure, distinct colours represent unique smart meters, bundled in the same node. For example, 

the upper row shows three different smart meters, and highlights that only one sample per smart meter 

passed the filtration rules stated in Sec. 4.2.3. Moreover, Figure 7b revealed that the nodal RMSE is 

particular high in two nodes (> 6 °C), which is not easily seen from bulk of the temperature data 

(Figure 6). Discussions with the utility revealed that the smart meter linked to node 64 was incorrectly 

affiliated to the DMA. When only assessing smart meter demand data, this consumer would not have 

been identified as easily, as a single consumer’s demand has little influence on the pressure loss or 

total demand of the DMA. Furthermore, the high RMSE of node 44 was owing to an inaccurate 

bundling of smart meters in a node too far away from the actual consumption. The actual position of 

the smart meter was on the side branch next to node 44 (Figure 7b). Removing these two nodes from 

RMSE computations improved the median RMSE to 0.63 °C (mean to 0.85 °C). 

4.4 Limitations of temperature samples and modelling 

Owing the system set-up of collecting smart meter data, only a small fraction of temperature data 

(less than 0.2 % during the analysed period) could be used for estimating soil and water temperatures. 

A more sophisticated data collection approach, for example storing the temperature values directly 

after a high volume of water was consumed and transmitting this data would be beneficial. Likewise, 

a finer sampling resolution would increase the applicability of the data. Moreover, the hydraulic 

model turned out to be a limiting factor in this work. As smart meters were bundled in WDN nodes, 

they might not represent the temperature at the actual location. Thus, a higher level of detail with 

  
(a) Effect of varying λsoil on RMSE. (b) Nodal RMSE with λsoil = 2 [W/m/K]. 

Figure 7. Varying the thermal conductivity of the soil (λsoil) affects the mean and median root mean squared 

error (RMSE) of all nodes in the analysed network (a). The nodal RMSE for λsoil = 2 [W/m/K] is illustrated in 

(b). 
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distinct nodes for each consumer, including service lines, could be beneficial to improve modelling 

results. 

5 Conclusion 

Application of smart meter temperature data revealed various valuable potentials within the field of 

water distribution system analysis. Consumption based filtration rules were run to categorize the data 

into samples representing soil and water distribution network temperatures. Analysis of these soil 

temperature estimates revealed anomalies in the utility’s asset database, such as missing and incorrect 

service line information. Combining a hydraulic and temperature model made it possible to simulate 

the temperature throughout a DMA. Comparing the modelled values with filtered smart meter 

temperatures showed a satisfying resemblance (a mean root mean squared error, based on the 

hydraulic model’s nodes, of around 1 °C), however, two nodes had a much high error (> 6 °C) than 

the mean. The reasons for this were identified: one consumer was wrongly affiliated to the DMA, 

otherwise not easily detectable from the smart meter demand data only. The other nodal error revealed 

that the applied hydraulic model should include distinct nodes for each consumer, as temperatures 

otherwise may not represent the actual temperature at the node’s location. Moreover, only a small 

fraction of the analysed data turned out to be applicable (< 0.2 %), as often temperature data 

represented a mixture between indoor and soil temperatures. Thus, more advanced sampling methods 

are required, increasing the applicability of the data. An easy solution could be to collect a finer 

sampling resolution than currently implemented (< 30 min). All in all, the application of the model 

and data highlighted the potential of smart meter temperatures as a valuable tool for improved asset 

management and water distribution system analysis.  

  

Figure 8. Smart meter temperatures (including ± 1 hr error margin) vs. simulated temperatures and the 

respective root mean squared error (RMSE). Distinct colours represent unique smart meters. 
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Supporting Information 

A Parameter sensitivity 

The eight scenarios, denoted ‘A-H’ in Table A-1 describe various parameter combinations based on 

the values listed in Table 3.  

Figure A-1 illustrates how the simulated stagnant water temperature slowly approximates the soil 

temperature based on varying parameter scenarios. The ratio between the simulated water 

temperature and soil temperature at t = 3 hr for these scenarios is shown in Table 3.  

Table A-1. Eight scenarios based on parameter changes from Table 3 displayed in Figure A-1. 

Scenario λsoil – 50% λsoil + 50% λpipe– 30% λpipe+ 30% ro -30% ro +30% 

A X  X  X  

B X  X   X 

C X   X X  

D X   X  X 

E  X X  X  

F  X X   X 

G  X  X X  

H  X  X  X 

 Tsoil = 12.6 °C Tsoil = 23.4 °C 
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w
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Figure A-1. Each line illustrates a parameter scenario (Table 3) leading to a change in water temperature of 

stagnant water in service lines over time.  
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B Water temperatures 

Table B-1 lists the number of samples passing the filtration rules (Sec. 3.2.3) when varying y. 

Figure B-1 shows the distribution of the samples at different filtration rates listed in Table B-1. 

 
Figure B-1. Smart meter temperatures representing the water temperature in the water distribution network at 

different demand rates of y based on the filtering rules set in Table B-1. 
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Figure A-2. Sensitivity analysis of parameters affecting the temperature in service pipes at t = 3 hr.  
 

Table B-1. Water temperature model results with different filtration rules (Sec. 3.2.3) and soil temperatures 

estimated from linear regression model shown in Figure 5. 

Demand ≥ y % Sample age ≤ ω No. of samples  Samples above soil temperature 

100 15 3091 718/3091 = 23% 

200 15 1168 222/1168 = 19% 

300 15 597 100/597 = 17% 

400 15 387 64/387 = 17% 
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Abstract This paper explores the potential for using large-scale heat pumps (HPs) to extract energy 

from Copenhagen’s drinking water network and deliver it to its district heating system. The system 

involves certain losses in terms of additional heat and power consumption for end-use water heating. 

The net potential for energy extraction was analysed by means of an EPANET model to simulate 

system-wide temperatures in a piped distribution network. The model was validated against measured 

data from the network. Heat transfer in service lines was computed analytically and included in the 

net potential for energy extraction, which was determined to be 21 MW in Copenhagen. Around 38% 

of the HP source demand was harnessed from the ground. With HP COPs between 2.8 and 3.2, the 

System COP was only 1.7, thus suggesting that the choice of drinking water as a low-temperature 

heat source should depend on the available alternatives. Drinking water HPs have the side-benefit of 

preventing high drinking water temperatures; if operated in the summer they increased the share of 

supplied water complying with a recommended upper temperature limit of 12 °C from 42% to 81%. 

Keywords: District heating; Drinking water supply; Energy efficiency; Heat pumps; Heat transfer 

modelling 

1. Introduction 

Electrically driven heat pumps (HPs) represent an excellent means of integrating the power and 

heating systems in areas with a significant heating demand and large amounts of intermittent 

renewable energy in the power system [1]. HP operation will be particularly relevant during hours 

when a substantial wind power production lowers the price and carbon emission of electricity. A low 

electricity price reduces the revenues earned by CHP plants, and thus CHP and HP technology can 

complement each other well in district heating (DH) systems. 

To complement, or perhaps in some hours even replace individual CHP units, a significant total 

capacity of HPs must be installed. In dense urban environments, this poses the challenge to find low-

temperature sources of sufficient capacity. An in-depth assessment of all available heat sources is 

needed, and based on this, the full range of heat source options should be prioritized based on socio-

economic and/or private-economic analysis. An example of how to assess individual heat sources 

based on availability and performance is given in [2]. 

Since suitable large-scale heat sources are not necessarily abundant in urban areas [3], it may be 

worthwhile to take into account a variety of smaller sources, including wastewater networks [4,5] and 

groundwater reservoirs [6], in possible combination with surface water [7]. Another potential source 

mailto:jkir@env.dtu.dk
mailto:mryg@env.dtu.dk
mailto:tsom@mek.dtu.dk
mailto:be@mek.dtu.dk
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is the reduction of flow temperature from drinking water distribution mains, which are extensively 

available in the immediate underground of any city. 

Advantages of using drinking water as the heat source for a HP include its stable temperature around 

the year; its purity, which reduces fouling and maintenance needs on the HP components; and the fact 

that cooling is beneficial to drinking water as it limits bacterial growth [8], thereby preserving its 

quality for human consumption.  

A comprehensive review of energy use and recovery potential in urban water systems was provided 

by Elías-Maxil et al. [9]. They presented different ways of using water as a source for heat pumping, 

but stated that only few studies relate to the application of water before end-use. However, recent 

studies include the work of Blokker et al. [10] who analysed a drinking water HP supplying heat for 

900 homes in Almere City, Netherlands. De Pasquale et al. [11] analysed the potential for using a 

part of Milan’s drinking water network as a source for a 4.65 MW HP, and Jadwiszczak and 

Niemierka studied a system for integration into the DH system of Głogów, Poland [12]. Van der Hoek 

et al., in turn, investigated cold recovery from drinking water and the related microbiological effects 

[13]. 

A drawback of extracting heat from drinking water mains is that reduced water temperatures 

downstream give rise to increased end-use heat demand in households. The extra domestic heating 

Nomenclature Subscripts 

A amplitude of annual surface temperature [K] 0 initialization 

𝐶𝑝 specific heat [J/kg/K] A case A 

𝑑 diameter [m] air air 

𝐷 damping depth of annual fluctuation [m] ave average 

�̇� electrical power demand [W] B case B 

𝑓 fraction of total consumption com compressor 

ℎ height of soil layer above pipe [m] demand demand 

𝐻 corrected height of soil layer above pipe [m] DH district heating 

𝐾𝑝 heat transmission coefficient per m [W/m/K] e evaporator 

l height of fictitious soil layer above pipe [m] ext extraction 

𝐿 length [m] i inner 

𝑚 mass [kg] model modelled 

�̇� mass flow rate [kg/s] net net 

�̇� heat flow rate [W] o outer 

𝑟 radius [m] pipe pipe 

𝑅 thermal resistance [m.K/W] return return 

𝑡 time [s] soil soil 

𝑇 temperature [K] source heat source 

�̇� volumetric flow rate [m3/s] supply supply 

�̇� electrical power [W] sys system 

  year year 

Greek symbols water water 

α heat transfer coefficient [W/m2/K] wall pipe wall 

δ thickness [m]   

Δ change Abbreviations  

η efficiency [-] CHP combined heat and power 

κ thermal diffusivity [m2/s] COP coefficient of performance 

λ thermal conductivity [W/m/K] DH district heating 

µ dynamic viscosity [kg/m/s] HP heat pump 

ρ density [kg/m3] MSX Multi-Species Extension 

φ correction factor [K·m2/W] PE polyethylene  

ω frequency [s-1]   
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demand is partly offset by additional heat transfer from the soil surrounding the water pipes, which 

is triggered by the increased temperature difference between soil and water upstream.  

Since the heat transfer from soil to water is to a great extent what determines the energy balance of 

drinking water HPs, the use of this technology is comparable to ground-source heat extraction at a 

very large scale. In other words, the amount of additional heat transfer obtained from the soil 

determines the rationality of using drinking water as a heat source.  

The purpose of the present study is to determine the technical potential for large drinking water HPs 

in the DH system of the City of Copenhagen, while taking into account a number of technical 

constraints related to their location. The potential is determined by modelling of the ground-source 

heat that is gained when HPs are installed at all water distribution mains with an average flow rate 

exceeding 50 L/s. The technical constraints include the operational profile of the HPs, their distance 

to a DH network, and differences in supply temperatures of various DH distribution networks. In 

addition to the HP potential, this study examines the derived water cooling effects experienced by 

consumers. 

The study employs a hydraulic model provided by HOFOR, the Greater Copenhagen Utility [14], 

which was modified to include a heat transfer model to be solved in the EPANET Multi-Species 

Extension (MSX) [15,16], which enables computation of the water temperature change throughout 

the distribution system. Service lines were not included in the distribution network model, but to 

account for a potentially significant share of the total heat transfer in the pipelines, their contribution 

was computed outside the model. The EPANET-MSX approach for modelling heat transfer in 

drinking water networks was first used by Blokker et al [17], and later improved by De Pasquale [11]. 

The present work contributes with a heat transfer model validated against measurement data from the 

drinking water network, enabled in particular by the use of an accurate measure of the undisturbed 

soil temperature. 

2. Methods 

2.1. System description of drinking water heat pumps  

A visualization of the analysed case study is presented in Fig. 1, where the energy flows in the tradi-

tional energy system (case A, the baseline) are compared to a system with drinking water HPs in-

stalled (case B). In case A, water from the waterworks is distributed in the city and exchanges heat, 

�̇�soil,A, with the surrounding soil along its way through the network. The water is heated by warmer 

soil during summer, and cooled by colder soil during winter. The water consumers of Copenhagen 

have a demand for DH, �̇�demand,A, to cover their hot water needs, e.g. for showering. The DH system 

in Copenhagen covers more than 98% of the heat demand, so there is practically full overlap between 

water consumers and DH consumers in the system. The DH is produced mainly by CHP plants, waste 

incineration and peak-load boilers. The water consumers also demand electricity, �̇�demand,A, for water 

heating, e.g. in washing machines and for cooking. The electricity production may be based on, inter 

alia, wind turbines and CHP. 
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In case B a number of HPs driven by electricity, �̇�com, utilize low-temperature heat from the water 

supply network, �̇�e, and deliver it to the DH network, �̇�c. Due to the operation of HPs, water temper-

atures are reduced downstream. Compared to case A, this prompts a higher end-use DH and electricity 

demand, �̇�demand,B, and �̇�demand,B, for water heating for hot water consumption. However, the in-

crease in demand is partly offset by increased heat transfer from soil to water pipes, �̇�soil,B, which is 

triggered by the increased temperature difference between soil and water when the water is cooled 

upstream. The system’s net gain in energy, compared to case A, is the outcome of one of two situa-

tions: 1) If the soil is warmer than the water, the heat flow from soil to water increases. 2) If the soil 

is colder than the water, the heat loss from water to soil is reduced. 

The additional DH demand in case B compared to case A depends on the amount of additional heat 

transfer from the soil to the water distribution network, and on the fraction of total water consumption 

that is heated by means of DH: 

�̇�demand = �̇�demand,B − �̇�demand,A = ((�̇�e − �̇�soil,B) + �̇�soil,A) 𝑓DH = (�̇�e − �̇�soil)𝑓DH  (1) 

The potential for heat utilization from the drinking water supply was defined as a function of the 

acceptable temperature reduction in the drinking water main flows, and of the additional end-use DH 

demand. It is the thermal capacity effectively gained by the DH system from the drinking water HPs:  

�̇�net = �̇�e − �̇�demand (2) 

The power consumed by the HP is converted to thermal energy and contributes positively to the 

overall DH balance. This heat does not necessarily contribute directly to the reheating of cooled 

drinking water, but it will ease the load on other heat-producing units in the DH system. Leaving out 

this term allows us to assess a potential for the heat extraction that is independent of the concrete 

technology and COP of the HP applied.  

The gross potential for heat extraction from the water supply is then the thermal energy yield at the 

HP evaporator, which is given by the potential temperature decrease of the drinking water:  

�̇�e = �̇�water water𝐶p,water𝑇source (3) 

 
Figure 1. Energy system model without (A) and with (B) drinking water heat pumps (inspired by [11]). 
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When entering buildings, the water is thermally affected by the indoor ambient temperature, and was 

assumed to gain 1 K or more between the end of the service line and the first tap [18]. To warrant 

end-use temperatures higher than 4 °C, considered as the acceptable limit, the modelled exit temper-

atures would thus have to be higher than 3 °C. 

The degree of heat utilization achieved from the water supply was described as: 

util = �̇�net/�̇�e (4) 

The ratio defines a measure of the thermal yield effectively gained from the drinking water HPs 

against the thermal yield extracted from the evaporator. A heat utilization degree that only considers 

the contribution made by heat transfer from the soil was defined: 

util,soil = �̇�soil/�̇�e (5) 

The COP of the HPs is given as:  

COP = �̇�c/�̇�com (6) 

The additional end-use electricity demand in case B compared to case A is given by: 

�̇�demand = �̇�demand,B − �̇�demand,A = ((�̇�e − �̇�soil,B) + �̇�soil,A) 𝑓el = (�̇�e − �̇�soil)𝑓el 
(7) 

To account for the additional electricity end-use and the additional DH end-use, a system COP was 

defined: 

COPsys =
�̇�e − �̇�demand + �̇�com

�̇�com + �̇�demand

 
(8) 

where the numerator states the net thermal energy output of system B compared to system A, and the 

denominator states the net difference in electrical energy input. 

2.2. Assumptions on water, heating and electricity use 

Table 1 shows the assumed distribution of water use among different water services, and the energy 

source used to provide these services. The resulting 𝑓DH of 0.37 was applied for summer. In winter, 

one third of the cold water stagnant in domestic pipes and cisterns was assumed heated to room tem-

perature, which results in a larger 𝑓DH of 0.47. In both summer and winter, 𝑓el was assumed to be 

0.33. The remaining water fractions of 0.2 (in winter) or 0.3 (in summer) were assumed not to be 

heated. 

2.3. Case study network  

The case study investigated the heat transfer in the drinking water network of the City of Copenhagen. 

The water utility of Copenhagen, HOFOR, extracts groundwater from 7 waterworks and supplies 

drinking water to the entire city and some neighbouring municipalities. The system includes a reser-

voir that balances supply and demand by directing water to the reservoir at night when consumption 

is low. The network consists of a mix of cast iron, steel-reinforced concrete and polyethylene (PE) 

pipes. It is made up of 126 km transport lines (do = 650 mm to 1,250 mm), 157 km main lines (do = 

300 mm to 1,200 mm), and 787 km distribution lines (do = 50 mm to 290 mm) [20]. A hydraulic 

network model of this system [14] was implemented in EPANET. The total average discharge rate 
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from the 7 waterworks in the model is 2,165 L/s. The demand pattern applied in most nodes represents 

typical city consumption in an average 24-hour period. 

2.4. Model development 

EPANET-MSX is a water quality modelling tool designed to track the flow and reaction of chemical 

species in discrete water volumes, which are transported through the pipes until they reach the junc-

tions and undergo complete mixing [16]. Mathematically this is done by numerical integration of 

differential-algebraic equations. Temperature was modelled as a chemical species in EPANET-MSX, 

handled in concentration units. 

EPANET and MSX use a Lagrangian model to describe the system hydraulics and changes in water 

quality. The energy balance for water at any point in the pipes is therefore the energy balance of a 

closed system, i.e. of a control mass that travels through the pipes. For the energy balance for the 

closed system, it is assumed that changes in kinetic and potential energy are negligible. Boundary 

work may be neglected since EPANET assumes that the density of water is constant [15]. 

For a non-insulated cylindrical pipe buried in a semi-infinite solid, the rate of heat transfer into the 

control mass from the ambience was computed as proposed by [21]: 

�̇�soil = 𝐾𝑝𝐿(𝑇water − 𝑇soil) (9) 

The heat transfer processes taking place in the system comprise: convection of water in the pipe, 

conduction through the pipe wall, and conduction through the surrounding soil (Fig. 2). Drawing on 

heat transfer coefficients defined by [21] for DH and flue gas pipes, Kp, was defined as: 

𝐾𝑝 = (𝑅soil + 𝑅pipe + 𝑅water)−1 = (
ln (

4H
𝑑o

)

2soil
+

ln (
𝑑o
𝑑i

)

2pipe
+

1

waterdi
)

−1

 

(10) 

Rsoil includes a correction for the convective resistance at the soil surface, which translates this re-

sistance into an additional layer of soil [22] (Fig. 2): 

 

Table 1. Shares of water use for different purposes, and the energy source needed to heat it (based on [19]). 

Numbers in parenthesis apply to the summer situation. 

Water services Share of use [%] Heat source 

 

Share of water service 

that is heated [%] 

 Households Workplaces Total   

Shower and personal hygiene 46 10 37 district heating 100 

Toilet flushing 17 50 25 district heating 33 (0) 

Clothes washing 13 5 11 electricity 100 

Dish washing 10 20 13 electricity 100 

Cooking 7 15 9 electricity 100 

Miscellaneous 7 0 5 district heating 33 (0) 

Total share heated by district heating   47 (37) district heating  

Total share heated by electricity   33 electricity  

Total share unheated   20 (30) -  
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𝐻 = ℎ + 𝜑soil (11) 

where 𝜑 is defined as 0.0685 K·m2/W. 

Based on the energy balance for a closed system and the heat capacity of the control mass, the fol-

lowing expression was used to describe the time rate of change of the temperature of water in all 

pipes: 

𝑑𝑇water/dt =
𝐾𝑝

𝐶𝑝,waterwater𝑟i
2 (𝑇water − 𝑇soil) 

(12) 

At the junctions, MSX computes the final water temperature as the mass-based weighted average of 

the temperatures of all incoming streams. 

The output 𝑇water(𝑡) from EPANET-MSX was used to compute the additional heat transfer from the 

soil to the water distribution network: 

�̇�soil = �̇�water𝐶𝑝,water(𝑇water,A(𝑡) − 𝑇water,B(𝑡)) (13) 

where A and B refer to the considered cases without and with HPs (Fig. 1). 

2.5. Input parameters 

2.5.1 Initial water temperatures 

The initial conditions for Eq. 12 – the water temperature, Twater(0), at the inlets of the system – are the 

temperatures of the water exiting the 7 waterworks and the reservoir. HOFOR measures these tem-

peratures on a daily basis, and the data were used to calculate weekly averages for each source, cov-

ering the period July 2012 – September 2014. Twater(0) varied from 8.2 °C (the coolest source in its 

coolest state) to 11.3 °C (the warmest source in its warmest state). The yearly mean water temperature 

across all the sources was 9.3 °C. 

2.5.2 Undisturbed soil temperature 

The water distribution network of Copenhagen is buried at a depth of approximately 1.5 m. In upper 

soil layers, the soil temperature changes with depth. The soil temperature depends on ambient air 

temperature, wind velocity, solar radiation, sky temperature, thermal diffusivity of the soil, and phase 

 
Figure 2. Thermal resistances, temperatures and correction terms included in the model [21, 22].  
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changes of the soil water [17, 24, 25]. The temperature of city soils, moreover, may be affected by 

non-natural heat sources such as nearby basements or DH pipes [26]. The soil surrounding water 

pipes is also thermally affected by the convection of the water flowing through the pipes. 

The soil temperature applicable to the model is the undisturbed ground temperature, i.e. unaffected 

by heat transfer from the pipe. The soil temperature is sometimes taken as the temperature at the soil 

surface (or the air temperature) [11,23]; sometimes at the level of the pipe centre [22,14], but due to 

the thermal impact of the pipe on the surrounding soil, its accurate location lies somewhere between 

these two points (Fig. 2) and depends on the specific system [24].  

The undisturbed soil temperature was estimated to be equal to the water temperature measured at the 

periphery of the network at a location with low demand and where the water is in thermal equilibrium 

with the soil. The measured soil temperature ranged from 6.2 °C in the winter to 20.3 °C in the summer 

during 2012-2014.  

2.5.3 Soil, pipe and water properties 

Information about pipe depths, pipe wall thicknesses, and the material of each segment were based 

on [27]. The physical properties of water at 10 °C were used. All input parameters used in EPANET-

MSX are listed in Table 2. 

The thermal conductivity of soil depends on its water content, mineral content and texture (pore and 

particle size). For moraine clay, the predominant superficial soil type in Eastern Denmark and Co-

penhagen, literature values range from 1.1 W/m/K to 2.9 W/m/K [28]. The few studies conducted on 

Danish soils (although none in Copenhagen) indicate a thermal conductivity for moraine clay in the 

range 1.6 W/m/K to 2.2 W/m/K [28]. A high water content of the clay increases the conductivity. 

Since Copenhagen is located by the sea, the upper-end value of 2.2 W/m/K was used.  

For the validation of the model, the thermal conductivities of the three existing pipe materials were 

used. For the case study with HP simulation, all pipes in the network were assumed to be made of PE 

since HOFOR is in a process of gradually converting the entire piping network into this material. 

Table 2. Input parameters used in EPANET-MSX and for the soil temperature evaluation. 

Parameter Symbol Unit Value Description 

Initial temperatures of water leaving 

waterworks and reservoir 

Twater(t=0) [°C] 8.2 to 11.3 range of data measured at each waterworks/ res-

ervoir in July 2012 – Sept. 2014  

Undisturbed soil temperature Tsoil  [°C] 6.2 to 20.3 range of water temperatures measured at 

HOFOR’s laboratory in July 2012 – Sept. 2014  

Pipe wall thickness δwall [m] 1/9·di  

Pipe depth h [m] 1.4 + do/2  

Thermal conductivity of soil λsoil [W/m/K] 2.2 measured value for Danish moraine clay 

Thermal conductivity of pipes λpipe [W/m/K] 55; 0.42; 1 for pipes made of cast iron, polyethylene and 

steel-reinforced concrete, respectively 

Thermal conductivity of water λwater [W/m/K] 0.56  

Specific heat of water at 10 °C Cp,water [J/kg/K] 4188  

Specific heat of soil Cp,soil [J/kg/K] 1100  

Dynamic viscosity of water at 10 °C µwater [Pa·s] 0.001308  

Density of water at 10 °C ρwater [kg/m3] 999.7  

Density of soil ρsoil [kg/m3] 2000  
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2.6. Soil temperature evaluation  

In order to validate the heat transfer model and determine the magnitude of heat transfer correctly, 

the empirically determined Tsoil was compared with the measured air temperature, Tair, and a modelled 

soil temperature at 1.5 m depth, Tsoil,model – both commonly used approximations of the soil tempera-

ture. The measurement data for both Tair and Tsoil were fitted by the least squares method to a sinus-

oidal function [31], which describes soil temperature at a given depth and time during the year as a 

function of air temperature: 

𝑇soil(ℎ, 𝑡) = 𝑇air,ave + 𝐴air𝑒
−ℎ/𝐷sin (2(𝑡 − 𝑡0)/𝑡year − ℎ/𝐷 − /2) (14) 

where D is given by (2κ/ω)0.5, κ is defined as λsoil/(ρsoilCp,soil), and ω is 2/𝑡year. Tsoil,model was mod-

elled as Tair fitted to Eq. 14 and computed at h = 1.5 m. 

2.7. Heat pump modelling 

For the integration with the DH distribution network, each HP was assumed to re-heat a partial stream 

of the return flow to reach the DH supply temperature (Fig. 3). With this configuration, the HP in-

creases the DH temperature from between 45 °C and 50 °C up to between 70 °C and 90 °C, depending 

on whether the distribution area is a low-temperature or high-temperature DH zone. In such configu-

ration, the HP might be placed along the length of a DH main line. More upstream locations on the 

DH line, i.e. as close as possible to the local DH station, were preferred to secure larger heat demands. 

HPs for DH in Copenhagen tend to use ammonia as the working fluid, while other options include 

CO2, hydrocarbons, or one of the recently developed synthetic refrigerants with low global warming 

potential. Implementing HPs in the water supply requires special attention with respect to risk of 

contamination; avoiding leakage of working fluid into the water is crucial. The heat transfer from 

drinking water was therefore assumed to require either a double-walled heat exchanger, or a second-

ary heat transfer loop with a brine or heat transfer fluid such as CO2. Both solutions require a larger 

temperature difference between the heat source and the working fluid. The estimation of COP was 

based on the assumption of a brine system with 2 K minimum temperature differences in both heat 

exchangers. With reasonable design of the brine system, i.e. low temperature differences for heat 

 
Figure 3. Configuration of heat pump connection to a DH line (from [29]). The heat pump increases the 

temperature of a part of the return flow (TDH,return) to the supply temperature (TDH,supply), via a reduction 

of the drinking water temperature (Tsource). 
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exchange and insignificant maldistribution, this should not cause any issues related to the freezing 

point of clean water.  

For the purpose of assessing �̇�com and the system COP, the COP of the HPs was estimated based on 

characteristics for similar HP equipment recently installed in the same DH network [30]. The assumed 

temperatures and the resulting COP for the HPs in high-temperature and low-temperature DH zones 

are listed in Table 3. 

A drinking water flow of 50 L/s subjected to a temperature reduction of 5 K would deliver 1 MW 

source to a HP, which was considered the minimum capacity of interest in this study.  

The water flow would be subjected to additional pressure losses from the heat exchange process, 

manifold and additional piping, which requires increased pump power for the distribution of water. 

It is considered likely that the heat exchangers can be designed with a lower pressure loss than 50 

kPa. In case of a 50 L/s water flow rate, and an increased pressure loss of 50 kPa, the isentropic pump 

power is approximately a factor of 100 less than the power required for the HP, and thus considered 

negligible in the study.  

All major flows entering the city had volume flow rates exceeding the minimum value of 50 L/s. With 

a view to utilizing thermal energy from all of them, HPs were simulated in EPANET-MSX by appli-

cation of a temperature reduction, Tsource, in 8 selected nodes on the drinking water network (Fig. 4). 

The HPs were placed in spaces within a distance of 100 m from DH main lines, and priority was 

given to locations in low-temperature DH zones (HPs f) and g) met this criterion). Table 4 lists the 

average water flow rates of each HP location and the modelled source temperatures in February. 

For Copenhagen, the economic benefit of integrating large HPs can mainly be reaped in winter when 

HPs may replace peak-load production. To assess the net potential, �̇�net, in the coldest month, the 

EPANET-MSX model was run with temperature data from February (Tsoil = 6.7 °C) for a range of 

Tsource applied identically across the 8 nodes.  

In most of the drinking water mains, the direction of the water flow is changing at night when water 

fills the reservoir during the low-demand period. The flow direction reverses up to 10 times over the 

course of 5 to 7 nightly hours. Running HPs in such situations would result in excessive cooling of 

the water. Consequently, HPs were simulated to operate only during periods with sustained unidirec-

tional flow. Fig. 5 shows the daily water flow rates for the 8 locations when the ‘prohibited’ HP 

operation hours are left out (their water flow rates set equal to 0). 

Table 3. Assumptions on temperatures, and estimation of COP for HPs in high-temperature and low-temper-

ature zones. 

Heat pump location High-temperature Low-temperature 

Source inlet temperature [℃] 6 6 

Source outlet temperature [℃] 1 1 

Sink outlet temperature [℃] 90 70 

Sink inlet temperature [℃] 50 45 

Estimated COP [-] 2.8 3.2 
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2.8. Heat transfer in service lines 

Service lines or private ground lines contribute to the total heat transfer between soil and water, as 

they increase the residence time through a) additional pipe length and b) velocities being particularly 

low in these pipes. Service lines alone add 17% to the total pipe length of the system [20]. Moreover, 

heat transfer in small-diameter pipes may be relatively large due to the high ratio of surface area to 

mass of water. The magnitude of the extra heat transfer in service lines was estimated outside the 

model. 

The number of service lines in the City of Copenhagen is about 34,500 with a total length of 185 km 

[20], i.e. 5 m on average. The 34,500 lines serve a modelled demand of 1366 L/s, so the flow rate in 

a service line would be 0.04 L/s as a daily average. The typical service line has a diameter of 50 mm 

and was assumed made of PE. 34,500 such service lines were assigned to model nodes with a demand 

(a total of 8,674 nodes). Given that any node may contain several end users, the service lines were 

assigned by division of the demand in each node by the average demand of 0.04 L/s. 

 
Figure 4. Locations of modelled heat pumps on the water distribution mains (red). Heat pumps f) and g) 

are located in low-temperature DH zone, while the other heat pumps are located in high-temperature DH 

zones. 

Table 4. Average daily water flow rate and modelled average source temperature in February at eight HP 

locations a–h (see Fig. 4). 

Heat pump evaporator location a) b) c) d) e) f) g) h) 

February mean source temperature [ºC] 8.7 8.7 8.6 8.6 8.5 8.4 8.4 8.4 

Daily mean flow rate [L/s] 305 225 158 190 96 443 68 191 
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For case A and B, the additional heat transfer across the average service line was computed with the 

analytical solution to Eq. 12, while using the output temperatures from the EPANET-MSX simulation 

in February as input. The resulting new output temperatures were used to compute a new �̇�soil that 

included heat transfer in service lines.  

2.9. Neighbouring water distribution networks  

The EPANET model contained four nodes that represented a special case since the water from these 

nodes is discharged to neighbouring municipalities. In reality, the water is distributed onwards in 

smaller, local distribution networks that were not included in the EPANET model. The four nodes 

had a total discharge of 184.5 L/s and were located downstream of the HPs. As all of the discharged 

water was affected by the HPs, these sub-networks had to be considered in the energy balance. To 

account for the heat transfer taking place in these local supply networks (including service lines), the 

results for the supply network of Copenhagen were extrapolated by assuming that the ratio of 

�̇�demand to �̇�e was identical for water discharged in the city and water discharged in the local dis-

tributions networks.  

3. Results 

3.1. Model validation 

Fig. 6 shows a comparison between the measured Tsoil (see section 2.5.2), the measured air tempera-

ture, and a modelled soil temperature at 1.5 m depth (see section 2.6). The figure also shows the best 

fits of the measured air and soil temperatures to Eq. 14, as well as the yearly mean values for both. 

The measured Tsoil has the flatter curvature expected for a temperature measured at some depth. The-

oretically, Tsoil would lie somewhere between Tair and Tsoil,model if atmospheric air werethe only heat 

source affecting the soil temperature (as assumed in Eq. 14). As it appears, however, the yearly mean 

value of Tsoil (12.5 °C) is 3 K higher than the yearly mean air temperature in Copenhagen (9.3 °C). 

This difference probably reflects that the impact from direct solar radiation and/or non-natural heat 

 
Figure 5. Daily water flow rates at the 8 selected heat pump locations. The flow rate during hours with 

changing direction have been set equal to zero since the heat pumps do not operate during this period. 

Three locations (e, f and h) have unidirectional flow for 24 hours. In order to avoid excessively cold 

temperatures, the operation of node d is particularly constricted since a part of its stream has already 

been cooled by another heat pump during several hours. 
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sources is too significant to ignore. Other empirical soil temperature studies have showed similar 

results, i.e. of air temperature-based models underestimating the soil temperature by 2 K to 4 K [32, 

33]. Based on these considerations, the measured soil temperature was deemed a plausible estimate 

for the true soil temperature. 

The water temperature is measured every week at 20 end-use points on the distribution network. The 

model results were compared with measurements from 15 of these sampling points, the locations of 

which were all represented in the model. The full network model was thus compared with weekly 

measurements in 15 points from week 28 of 2012 to week 36 of 2014 (see Appendix).  

The Pearson’s product-moment correlation was computed to assess the relationship between the 

measured and modelled water temperature. The results indicate a strong positive correlation between 

the two variables that is statistically significant (r = 0.95, n = 1497, p < 0.001). The best fit of a linear 

regression model of the modelled vs. measured water temperatures (Fig. 7) yields an R2 = 0.91. Re-

sults from weeks 30-32 of 2013 have been left out from the regression since a major interruption in 

operation happened during that period [35], and the corresponding measurements (the outliers clearly 

visible in the Appendix) appear unusual.  

The regression line reveals a slight skew; the model slightly overestimates water temperatures in the 

winter and underestimates them in the summer. This would be the case if the model somewhat un-

derestimates heat transfer. This may be due to the lack of heat transfer in service lines in the model, 

which is, conversely, reflected in the measurements. It is also possible that the thermal conductivity 

of the soil is larger than 2.2 W/m/K. In turn, the skew is not consistent with a different soil temperature 

input such as Tair or Tsoil,model (Fig. 6).  

 
Figure 6. Daily values of measured soil temperature, Tsoil, from 2013 (red dots), its best fit to a sinusoidal 

function (red, fully drawn), and its yearly mean (red, dotted); daily mean measured air temperature, Tair, 

from a private weather station [34] in Copenhagen in 2013 (grey), its best fit to a sinusoidal f unction 

(black, fully drawn), and its yearly mean (black, finer dotted); and a sinusoidal soil temperature modelled 

for a depth of 1.5 m, Tsoil,model (black, longer dotted). 
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The main deviations between simulated and measured results as well as the largest weekly fluctua-

tions in measured temperatures appear during the summer holiday season (see Appendix). Further-

more, the bias is particularly dominated by results for three locations that are possibly influenced by 

specific local conditions (see Appendix). 

Since the correlation is strong, and the skew is not systematically present across sampling points, the 

heat transfer model was considered credible and suitable for the case study. 

3.2. Characteristics of the system and degree of exploitation of the heat source 
Figs. 8 and 9 show the temperature distribution from EPANET-MSX of the total amount of supplied 

water in February and August, respectively, in both case A and B with a Tsource of 5 K. In August, 

less than 1% of the distributed water reaches the soil temperature of 18.9 °C in the distribution net-

work, whether or not HPs are used (Fig. 9). For 99% of the network the residence time of the water 

is shorter than the time required to heat the water to soil temperature. If the residence time of all water 

in the system were high enough, or if the heat flux in the network were higher, the water would 

approach the soil temperature, thereby decreasing the additional end-use heating demand. This sub-

stantiates the need to address the additional heat transfer occurring in service lines, where the resi-

dence time is prolonged due to additional pipe lengths and low velocities. 

Case B in Fig. 8 provides a few insights on the degree to which the drinking water heat source is 

exploited. 69% of the supplied water (the part with temperatures below 6.7 °C) has been subjected to 

cooling by the HPs and has to some extent regained thermal energy from the soil. 31% of the total 

water supply (the part with temperatures above 6.7 °C) has not been in contact with HPs, or has been 

significantly mixed with unexploited flows. This is water that passes the HPs while they are not op-

erating (at night), and water that leaves the distribution mains before reaching the HPs. 2.7% of the 

water supply reaches the soil temperature. 

 
Figure 7. Modelled water temperatures vs. weekly measured temperatures (1497 samples from 15 

sampling points). The blue dots represent the peripheral location used to determine the soil temperature. 
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3.3. Potential for heat recovery from Copenhagen’s water distribution network incl. service lines 

The results of simulating the heat transfer in the water distribution network and service lines are 

shown in Fig. 10 where �̇�net is plotted against �̇�e for five different values of Tsource (1 K to 5 K). 

The change in the system energy flows resulting from a Tsource of 5 K is shown in Fig. 11 as a daily 

average. �̇�net in this case (�̇�e − �̇�demand) is 20.7 MW. The utilization degree, 
util

, at any ∆Tsource 

is 71% of the thermal energy extracted at the evaporator (Fig. 10). The ground-source heat of Copen-

hagen’s soils on its own returns 38% of the extracted heat to water consumers through additional heat 

transfer to the distribution and service lines (Fig. 12). Of the remaining 62% of the extracted energy, 

20% (equal to 12%-points) is kept by the DH system because the water fraction for cold water con-

sumption needs no reheating by end-users. Another 33% (or 20%-points) is kept by the DH system 

because this water fraction is not reheated by DH, but by electricity (Fig. 12). 

The magnitude of the heat extraction does not affect the degree of utilization, so the technical potential 

for heat utilization, �̇�net, is the net potential resulting when the installed HP capacity is maximised 

without causing unacceptably low end-use temperatures. The potential of 20.7 MW is obtained with 

a Tsource of 5 K and an average evaporator yield of 29.2 MW. With a Tsource of 5 K, 8% of the 

modelled demand had temperatures between 3 °C and 4 °C, but these are assumed to increase to 

acceptable levels in indoor piping installations affected by the ambient air temperature.  

Given a COP of 3.2 for HPs in low-temperature DH zones, and 2.8 in high-temperature DH zones 

(the weighted average COP being 2.9), a heating potential of 44.4 MW is obtained (Fig. 11). Sub-

tracting the additional heating demand of 8.5 MW gives a net heating potential of 35.9 MW.  

The system COP is only 1.7, which owes not least to the increased end-use electricity demand for 

water heating that is nearly half as large as �̇�com (Fig. 11).  

 
Figure 8. Temperature in the distribution mains    

of the accumulated water delivery in February 

without (A) and with heat pumps and a Tsource         

of 5 K (B). 

 Figure 9. Temperature in the distribution mains     

of the accumulated water delivery in August 

without (A) and with heat pumps and a Tsource of 

5 K (B). 
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The results indicate that a full-scale application of large HPs in the drinking water network would 

cover around 2.6% of the DH peak demand, after the additional end-use DH demand has been sub-

tracted (Fig. 13). 

3.4. Significance of heat pump COP  

A HP elaborately designed for the case system could reach a COP higher than the values of 2.8 and 

3.2 found in this study. However, as a number of factors affect the COP, it is also possible that a 

lower efficiency may be obtained. 

Fig. 14 shows the system COP at various values of the HP COP. A HP COP of e.g. 2.0 reduces the 

system COP to 1.4, which is only a little more than that of an electric boiler. Increasing the COP to 

 
Figure 10. Potential for heat utilization (�̇�𝒏𝒆𝒕) vs. heat extraction (�̇�𝒆). The temperature reduction of 

the source is shown. 

 
Figure 11. Change in the system energy flows resulting from a 𝑻𝒔𝒐𝒖𝒓𝒄𝒆 of 5 K. 
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4.0 increases the system COP to just 1.9. This difference is due to the fixed end-use power and heat 

consumption for water heating. 

3.5. Significance of pipe and soil thermal resistances 

  
Figure 12. Heat utilization in February with heat pumps and a Tsource of 5 K. The full height of the bar 

is, the energy extracted from the water supply. The sum of the grey bar elements is the heat utilization 

from drinking water in the DH system; and their share of the full bar height is ηutil. The white bar element 

is the needed water re-heating provided by the DH system. Also shown are the contributions to heat 

utilization from the soil, the unheated share of drinking water, and the water share re -heated by 

electricity. 

  

Figure 13. Drinking water heat pump potential as a share of the estimated annual DH demand [36]. The heat 

demand applies to Copenhagen and the other municipalities whose drinking water is utilized as a heat source 

in this study (the Greater Copenhagen DH system in its entirety covers a larger demand than what is shown). 
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An assessment was made of the impact of converting the network from mainly cast iron to PE, which 

has a lower thermal conductivity. However, the resistance of the pipe material is insignificant com-

pared to the soil resistance (Table 5). The results indicate that the thermal resistance of soil is the 

main impediment to heat transfer, leaving the pipe material to be of little importance. 

Table 5. Sensitivity analysis for different thermal resistances included. 

Thermal resistances included �̇�net [MW] ηutil ηutil,soil 

Soil, water, pipes of cast iron etc. (present network) 20.7 0.71 0.38 

Soil, water, pipes of PE (future network; main results) 20.7 0.71 0.38 

Water, pipes of PE 25.3 0.86 0.71 

The exact magnitude of the soil thermal conductivity in Copenhagen is uncertain, and it appears to 

be of some significance. A 32% increase or decrease in the thermal conductivity of soil changes 

ηutil,soil by 11% to 15% (Fig. 15). However, ηutil only varies between 2% and 4%, so the potential for 

heat utilization is not affected much. 

 
Figure 14. System COP vs. heat pump COP. 

 
Figure 15. Heat utilization at different thermal conductivities of soil. The full height of each bar is  �̇�𝒆, 

the energy extracted from the water supply. The sum of the grey bar elements is �̇�𝒏𝒆𝒕, the heat utilization 

from drinking water in the DH system; and their share of the full bar height is ηutil. The percentage label 

on �̇�𝒔𝒐𝒊𝒍 is ηutil,soil. 
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3.6. Water cooling 

HP operation is currently expected to be uneconomical during the summer when Copenhagen’s entire 

DH demand is met by waste incineration. However, with growing fractions of waste being recycled 

instead of incinerated, a part of the summer heat demand may be covered by other production tech-

nologies in the future. Furthermore, operating HPs during the warm season would contribute to pre-

venting high drinking water temperatures. Danish regulation [37] recommends an upper temperature 

limit of 12 °C at the tap, but large areas in Copenhagen have difficulties meeting this limit in warm 

periods. HP operation in August with a Tsource = 5 K increased the share of water delivered from 

distribution lines complying with the 12 °C limit from 42% to 81% (Fig. 9). 

4. Discussion and potential future developments 

4.1. Comparison with a previous case study 

As previously mentioned, the EPANET-MSX modelling approach has been used for modelling HPs 

in drinking water systems in Almere [10], Głogów [12] and Milan [11]. For the case study in Almere, 

the heat utilization of the system was reportedly very high, but the heat transfer model used there did 

not take into account the thermal resistance of soil (cf. Table 5). The case study in Głogów assumed 

no need entirely for the reheating of water in the buildings. Moreover, the COP of 5.2 assumed in the 

Głogów study [12], seems optimistic, while the COPs of 2.8 and 3.2 used in our study may be slightly 

conservative.  

In the present work, the heat utilization degree from soil (38%) is more than three times higher than 

found by De Pasquale et al. (10.3%) in Milan [11]. De Pasquale compared their heat transfer model 

with a model similar to the one used in the present study, labelled the shape factor model. They used 

air temperature as input to the shape factor model, as opposed to a modelled soil temperature at 1.5 

m depth for the De Pasquale model. Their results indicated that the shape factor model overestimated 

heat transfer compared to the De Pasquale model.  

Using our heat transfer model as the basis, Fig. 16 shows the predicted heat transfer per unit pipe 

length as a function of three different soil temperature inputs displayed in Fig. 6. A case where the 

term H has been replaced by a fictitious soil layer of magnitude l = √𝜅/ω was also assessed to mirror 

the main difference between the shape factor model and the De Pasquale model. 

Air temperature is shown to predict larger heat transfer than the modelled soil temperature at 1.5 m 

depth (Fig. 16). The fictitious soil layer appears to be an insignificant alteration of the shape factor 

model when identical soil temperatures (at 1.5 m depth) were applied for both cases. We therefore 

conclude that the difference between the De Pasquale model and the model used in our study is in 

fact insignificant. 

The difference in results is also not a consequence of the different choice of soil temperature. The 

empirical soil temperature in our case study provided a more accurate basis for validating the model’s 

performance against measurement data. But whereas the soil temperature influences heat transfer, it 

does not influence the heat utilization degree.  



Paper V, page 20 of 25 

 

 

Instead, the different results must pertain to the characteristics of the two systems. Firstly, the soil 

conditions in Copenhagen and Milan are different; Copenhagen has waterlogged clay soils that con-

duct heat relatively well, resulting in more favourable conditions for heat utilization. Sensitivity anal-

ysis showed that reducing the thermal conductivity of soil from 2.2 to 1.5 W/m/K reduced util,soil 

from 38% to 32%. Disregarding the heat transfer in service lines would further reduce it to 28%. 

Secondly, the residence time of water in the pipes is likely to have an impact. Our modelled system 

has a demand nearly 7 times greater than the system studied by De Pasquale et al., and a number of 

pipes almost 11 times greater. The difference between these two ratios may support the assumption 

that the general residence time of water is higher in the Copenhagen network, which might explain 

the remaining difference to the Milan results. The layout of the pipe network (dimensions, length) 

and water velocities are key factors determining how much heat can be reaped. Individual analysis of 

any given water supply system therefore seems necessary to accurately assess its potential as a 

ground-source heat system.  

 4.2. Potential further model improvements 

The empirical undisturbed soil temperature used in this study is considerably higher than the modelled 

temperatures commonly used (e.g. by [38]) to represent soil temperature at shallow depths in Den-

mark, but it proved more valid for Copenhagen. One limitation of this study is that when HPs operate, 

the radius of the soil layer that is thermally disturbed by the water pipes may increase, and so the 

undisturbed temperature may change as well. Developing a transient model that accounts for this 

situation could be a meaningful improvement. Service lines add significantly to the total pipe length 

and residence time of water in a system, and in our case increased util,soil from 34% to 38%. Due to 

a lack of data, our study did not include private ground lines extending from the end of service lines 

to the buildings. Moreover, our use of the hourly average water flow rate to compute the heat transfer 

in service lines is a simplification. A typical domestic demand pattern may involve great fluctuations 

and sustained periods with no use at all. How demand patterns and private ground lines influence the 

residence time and heat transfer deserves further investigation. 

 
Figure 16. Heat flux per unit pipe length when the three temperature curves in Fig. 6 (Tair, Tsoil and 

Tsoil,model) are applied as input, and when (in a fourth case) an additional fictitious soil layer is added to 

the heat transfer model (blue, dotted). The inner pipe diameter is 0.2 m, and the pipe material is cast iron. 

The water temperature is 9 °C, and the water flow rate is 10 L/s. 
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4.3. Competing heat sources and economic considerations 

So far, the evidence points to a heat utilization degree of around 71% in Copenhagen, meaning that 

29% of the evaporator capacity of a drinking water HP will be dedicated to covering the additional 

DH demand that arises due to its operation. The system COP is also affected, not least by the increased 

electricity demand. We therefore suggest that other potential heat sources should be considered before 

drinking water, in order to avoid the social costs involved.  

Competing low-temperature sources for large HPs include air, seawater, wastewater and groundwa-

ter, but not ordinary ground-source heat. Ground-source HPs delivering 10 MW would require an 

area of 1 million m2 for horizontal piping [39], which is hardly attainable in a dense urban environ-

ment. Ground-source HPs would also require significant investment and installation costs for new 

piping, which for drinking water HPs would be sunk costs. 

Competing heat sources for HPs are not abundant everywhere [3], and in specific locations of interest 

drinking water HPs may be the only feasible option. In such cases, only an economic feasibility study 

will reveal if the benefits of their operation offset the cost of the additional demand. Such economic 

analysis depends on details related to the alternative heat supply technology, fuel and electricity costs, 

as well as taxation or subsidy schemes. A complete assessment considering both private-economic, 

such as presented in [2], and socio-economic analysis should be carried out to reflect the real value 

of new capacity.  

4.4. Heat pump potential and system boundaries 

In [3] the estimated potential heating capacity of HPs using drinking water as heat source in Greater 

Copenhagen was 13.5 MW. The present work shows a potential more than 50% higher. The principal 

reason for this difference is that [3] only included reservoirs and waterworks, and not the water dis-

tribution mains.  

This study has focused on the potential for applying large drinking water HPs in the City of Copen-

hagen, and this implied exploitation of roughly 69% of the water supply. The remaining 31% of the 

water is either distributed upstream of the HPs, or passes the HPs while they are not operating at 

night. A real implementation of HPs might permit some operation during the night if it would involve 

a system control of a set minimum exit temperature of the water. This would prevent excessive cool-

ing even as the water changes direction several times. A minimum number of full load hours for the 

HP would be required to cover the installation cost. Thus, for several of the HP locations, the chal-

lenge with limited potential hours of operation (Fig. 5) would have to be overcome, or they could turn 

out infeasible.  

The water that is distributed upstream of HPs represents an unexploited potential that could be har-

nessed by means of HPs upstream of Copenhagen or HPs smaller than 1 MW inside Copenhagen. 

Potential HP locations in neighbouring municipalities might thus be worth considering, not least the 

reservoir, which is located outside the city but within the same DH transmission area. Not only is the 

reservoir more accessible for installation and maintenance works; it also circumvents the problem 

with water flow reversal limiting HP operation on several main lines during the night. 
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5. Conclusion 

This study investigated the potential for large drinking water HPs in Copenhagen’s DH system, based 

on a number of technical constraints for the HPs, including their operational profile, their distance to 

a DH network, and differences in supply temperatures. The potential was assessed by determining 

the energy balance for drinking water through simulation of the ground-source heat that is transferred 

to the water distribution lines after HPs have cooled the water. A heat transfer model was developed 

for simulation of system-wide temperatures in a piped water network using the EPANET-MSX 

model. Our simulations were validated against measured temperatures in an actual drinking water 

network, and the use of empirical urban soil temperatures proved key to achieving a valid model.  

Model simulations showed that the ground-source heat of Copenhagen’s soils returned 38% of the 

extracted heat to water consumers through additional heat transfer to the distribution lines. This is 

more than found in a previous study, probably due to better thermal properties of the soil and higher 

residence times of water in the supply system.  

A share of the drinking water is not re-heated by end-users. Taking that share into account, the results 

showed a potential 71% utilization degree for water distribution mains used as a heat source for HPs 

in Copenhagen’s DH system. 

The simulations showed a total net potential of 20.7 MW (evaporator capacity) for eight large drink-

ing water HPs. With HP COPs ranging from 2.8 to 3.2, the resulting net heating potential was 35.9 

MW corresponding to 2.6% of the DH peak demand. The corresponding system COP of the drinking 

water HPs was 1.7. The results indicate that drinking water HPs should only be considered where 

other heat sources are unavailable.  

The study also investigated the derived cooling effect experienced by end-users. This is an added 

value to be considered from drinking water HPs in warmer periods. Simulation of HP operation in 

August increased the share of distributed water complying with the 12 °C recommended upper limit 

from 42% to 81%. 
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Appendix 

The heat transfer model results were compared with water temperature measurements from 15 sam-

pling points at end-use nodes across the network. The full network model was thus compared with 

weekly measurements in 15 points from week 28 of 2012 to week 36 of 2014. Since sampling is 

undertaken in the morning, averaged model results for the five hours between 7 a.m. and 12 p.m. 

were used.  

The model predicts the water temperature well for the 15 sampling locations, with a few exceptions. 

Locations m), n) and o) have measured summer temperatures somewhat higher than the modelled 

ones. It is possible that these test locations are influenced by specific local conditions such as very 

long service lines. A map of the three locations indicates service line lengths between 23 m and 50 m 
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[40]. For these locations, the exact timing of the water sampling also seems key; the model predicts 

significant temperature differences between early morning hours and noon, which may explain the 

disparity. 

Location f) has modelled temperatures generally higher than the measured ones. The locality of this 

sampling point has undergone significant development in recent years, so it is quite possible that the 

water demand has increased and the residence time has decreased since the hydraulic model was 

developed. This would explain the difference. In general, small alterations and simplifications in the 

network model compared to the real set-up can explain deviations between simulated and observed 

results. 
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Abstract ‘Smart meters’ measuring the water consumption with a high temporal resolution at the 

consumers’ households are globally deployed at an increasing rate. This may provide detailed 

knowledge of the wastewater inflow to the sewer systems in space and time, which can open up for 

new types of system analyses. In this study, the quality of the smart meter data is first validated by 

comparing with data from various sources. Subsequently, we use a detailed hydrodynamic sewer 

system model to link the smart meter data from almost 2,000 consumers with in-sewer flow obser-

vations to simulate the wastewater component of the dry weather flow and to identify anomalies. 

The results show that smart meter data is suitable as input to a distributed sewer model since the 

temporal dynamics of the model results and in-sewer observations match well. Furthermore, the 

study indicates that the biggest uncertainty is in fact related to the in-sewer flow observations, 

which prevents more advanced investigations of the dry weather flow composition. The study also 

shows that digital system integration may be complicated by data and models being hidden in dif-

ferent silos within and across organisations. Overcoming the obstacles may, however, improve both 

offline and real-time urban drainage management. 

Keywords: Anomaly detection; Distributed model; Dry weather flow; Smart meters; Urban drain-

age; Wastewater flow 

1. Introduction 

The dry weather flow (DWF) in sewer systems may consist of wastewater from households, indus-

try and institutions; groundwater infiltration; and rain-induced infiltration. There may also be exfil-

tration out from the system. Knowledge of the wastewater flow component can, by comparison with 

in-sewer flow data, be used to estimate the addition or loss of water through infiltration and exfiltra-

tion (Cole and Stewart, 2013) and thus contribute to closing the water balance of the urban drainage 

system. Accurate knowledge of the sources of DWF throughout the system can be used for a wide 

range of management objectives: 

- Optimised dimensioning (Cole and Stewart, 2013) and operation (Brito et al., 2017) of sewer 

systems, hereunder control during dry weather with focus on energy minimisation, or CSO 

minimisation if wastewater makes up a substantial part of the flow. Such control could be car-

ried out using model predictive control (Lund et al., 2018). 

mailto:nalu@env.dtu.dk
mailto:jkir@env.dtu.dk
mailto:psmi@env.dtu.dk
mailto:morb@env.dtu.dk
mailto:hem@dhigroup.com
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- Optimised dimensioning and operation (for example, chemical dosing) of wastewater treatment 

plants (WWTPs) based on information on water consumer types and thus the likely constituents 

in the wastewater (Nguyen et al., 2018). 

- Individual and more equitable household wastewater billing based on water consumption type 

and constituents (Nguyen et al., 2018). 

- Asset management (Brito et al., 2017; Djebbar and Kadota, 1998) based on, for example, 

knowledge of leaky sewer pipes. 

- Regulatory compliance (Brito et al., 2017). 

- Estimation of total suspended solids (TSS), chemical oxygen demand (COD), organic matter, 

drugs, and nitrogenous pollution loads, if the DWF estimation is supported by compound 

measurements/estimations (Métadier and Bertrand-Krajewski, 2011; Plósz et al., 2013; 

Schilperoort et al., 2012). 

- Improved heat recovery from sewage systems (for example, Abdel-Aal et al., 2018). 

- Planning of decentralised wastewater reuse (Elías-Maxil et al., 2014).  

In residential areas, the wastewater flow is dominated by the citizens’ behaviour. In upstream parts 

of the system or in small systems, the flow is intermittent (i.e. occurring at irregular intervals) and 

the detailed flow dynamics may not be captured by the coarse sampling resolutions of the meas-

urement equipment (Butler and Graham, 1995; Elías-Maxil et al., 2014). The DWF of smaller areas 

is thus in general more difficult to estimate (Djebbar and Kadota, 1998). Further downstream, the 

aggregation of different inputs from many small upstream sources results in a change in the nature 

of the wastewater flow and may appear less random (Butler and Graham, 1995). The DWF out from 

a catchment has previously been studied in the open literature. Métadier and Bertrand-Krajewski 

(2011) analysed DWF data and recognised different flow patterns depending on the weekday and 

date, but also found a relative large variation within each pattern. Djebbar and Kadota (1998) esti-

mated DWF peaks and average DWF using a neural network model based on the land use and 

population, and Brito et al. (2017) fitted a partial least squares model to DWF data to be able to 

estimate the DWF in situations with missing data. All of these methods may be used to establish 

generalised DWF patterns, but will not give a real-time picture of the DWF. Such real-time infor-

mation could be obtained from in-sewer sensing, but flow sensors are often scarcely distributed 

since it is both expensive and impractical to cover a large urban drainage system (Djebbar and 

Kadota, 1998). Highly spatially distributed real-time DWF information is therefore not realistic to 

obtain using only in-sewer observations. 

Water supply and urban drainage systems are intrinsically linked since most of the consumed water 

ends up in the sewer system. The wastewater flow can thus be approximated by estimating the wa-

ter consumption. Butler and Graham (1995) and Elías-Maxil et al. (2014) used a questionnaire and a 

probabilistic model to estimate the water consumption. Both studies subsequently modelled the re-

sulting flow in the sewer system to obtain a spatial and temporal distribution of the wastewater 

flow. However, these methods also only provide generalised flow patterns. Contrarily, smart meters 

measure the real-time water consumption in each household every hour or even more frequently, 

and are increasingly being implemented as part of the digitalisation of the water sector, mainly for 

billing and leakage detection purposes (Boyle et al., 2013; Monks et al., 2019). In general, data col-
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lected from the water supply system should be pre-processed, including for example validation and 

re-estimation of missing and invalid data, before use (Kirstein et al., 2019a). After this, the smart 

meter data can be used to estimate the wastewater flow with a high spatial and temporal resolution, 

and may potentially also be used to estimate the wastewater constituents. Even though the concept 

of applying smart meter data to estimate wastewater flows has been mentioned in recent literature 

(Cole and Stewart, 2013; Monks et al., 2019; Nguyen et al., 2018), examples of this have to our 

knowledge not been investigated and documented yet.  

This study investigates the hypothesis that smart meter consumption data can be used for estimating 

the magnitude, timing and spatial distribution of the wastewater flow. This hypothesis is tested us-

ing data from the city of Elsinore, Denmark, by validating the smart meter data against observations 

from the waterworks outlet, observations from the WWTP inlet, and annual water consumption data 

from a database. The smart meter data is also routed through a 1D hydrodynamic (high-fidelity 

(HiFi)) urban drainage model for simulating the flow dynamics. Both the smart meter data and the 

simulated flow are compared to in-sewer flow observations in five locations in Elsinore city centre 

to identify system anomalies, hereunder the possibility of assessing other DWF components and the 

reliability of the data.  

2. Case study area and data 

In the city of Elsinore, Denmark, the utility company has installed smart meters at the consumers’ 

homes and in-sewer sensors in the urban drainage system in an overlapping time period, which ena-

bles the type of investigations performed in this study. 

Data from the water supply system 

Around 19,000 MULTICAL21 smart meters with a temporal resolution of one hour and an uncer-

tainty of up to ±5% (Kamstrup, 2019) are permanently installed in households and industries for 

billing purposes in Utility Elsinore (Figure 1). These smart meters cover the entire city, with only 

few consumers left without smart meters. 1,970 of these smart meters are situated in the area up-

stream of the in-sewer sensors (Figure 1), which is the main area of interest in this study. The instal-

lation and operation of the smart meters is undertaken by Contractor 1 who provided data from 

three separate weeks in 2018 and 2019 (Table 1). This smart meter data originates from hourly ac-

cumulated volume readings. In case of non-uniformly distributed time steps or missing meter read-

ings, Contractor 1 fill the data gaps primarily using linear interpolation to obtain a uniform interval 

between flow values of one hour. Kirstein et al. (2019b) showed that hourly readings are sufficient 

to estimate the water consumption if a great proportion of the smart meter data is not missing and if 

the original (“non-cleaned”) data resolution is less than two hours. The time periods in Table 1 were 

selected based on the availability of data as well as the absence of rain. Hourly outflow data from 

the waterworks were present for specific days in each time period (Table 1). Furthermore, a data-

base with the annual water consumption for each individual consumer in Elsinore from 2012 was 

provided by Contractor 2, who maintains the utility’s hydraulic water distribution network model. 

The utility also provided a list of known pipe bursts in the three time periods.  
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Table 1. Time periods with data. WWTP = wastewater treatment plant, SVK = Spildevandskomiteen.  

Data Provider Period 1 Period 2 Period 3 

Smart meter data [m3/hr]  Contractor 1 Oct 8-14, 2018  Nov 19-25, 2018  Feb 23-Mar 1, 2019 

Waterworks outflow data [m3/hr] Utility Elsinore Oct 11, 2018 Nov 18, 2018 Feb 24, 2019 

WWTP inflow data [m3/day] Utility Elsinore  Oct 8-14, 2018 Nov 19-25, 2018 Feb 23-Mar 1, 2019 

Water consumption database [m3/yr] Contractor 2 2012 - - 

In-sewer flow data [m3/2 min] Contractor 4 Oct 8-14, 2018 Nov 19-25, 2018 Feb 23-Mar 1, 2019 

Last day with rain before observations SVK data Oct 7, 2018 Nov 14, 2018 Feb 21, 2019 

Data from the urban drainage system 

Utility Elsinore has divided Elsinore into wastewater catchments depending on the flows in the 

sewer system. These catchments are described in the ‘wastewater plans’ together with the asset data 

such as the size and location of manholes, pipes, etc. (Figure 1 only shows the location of pipes). 

The asset data has been used as basis for a HiFi model of the sewer system, constructed in MIKE 

URBAN. The model has a drainage area of 386 hectares and contains 1,959 nodes of which seven 

are basins, 1,986 links, 30 pumps, 33 weirs and one orifice. Contractor 3 is responsible for main-

taining the model.  

Level and velocity sensors were installed in Elsinore city centre as part of a measurement campaign 

running from May 2018 to June 2019 initiated to calibrate the HiFi model. The sensors were present 

at five locations: east upstream (‘EU’), east downstream (‘ED’), central downstream (‘CD’), west 

upstream (‘WU’) and west downstream (‘WD’) (Figure 1). These abbreviations will be used both to 

refer to the sensor locations and to their upstream sub-catchments. The level and velocity observa-

tions stem from pressure and Doppler sensors, respectively. The uncertainty of the resulting flow 

data for the given sensors is estimated to around 12% (Franck, 2019). Two of each sensor type were 

installed at each of the five locations to ensure that data was always present as well as for validation 

purposes. The installation and maintenance of these sensors were undertaken by Contractor 4. This 

contractor combined the level and velocity data with the geometry of the pipes (multiplying the 

velocity with the wetted area based on the geometry) to obtain flow observations. The pipes are 

circular in four of the locations (‘WU’, ‘ED’, ‘CD’, and ‘WD’) while one location has an egg-

shaped geometry (‘EU’). Daily inflow data was also available for the WWTP (Table 1). These were 

aggregated from an ultrasound inlet flow sensor with an uncertainty of ±10 m3/hr (Laursen, 2019). 

Furthermore, information on last calibration dates for the WWTP inlet sensor as well as the in-

sewer sensors were obtained. 
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Figure 1. Map of Elsinore, Denmark, showing smart meters, the sewer system, five in-sewer flow observa-

tion locations with related sub-catchments (sub-divided into 111 smaller groups for smart meter aggrega-

tion), the wastewater treatment plant (WWTP), and the catchment discharging water to the WWTP. The flow 

between the sub-catchments in the sewer system is displayed in the lower left corner.  

3. Methods  

Extraction of smart meter consumption data 

Utility Elsinore supplied entries from 18,804 meters, of which 18,449 were georeferenced (i.e. their 

location was mapped). 338 of the remaining 355 meters were successfully referenced using the 

QGIS tool ‘MMQGIS’. The 17 non-referenced meters were manually verified to be located outside 

the area upstream of the in-sewer sensors, and thus outside the main area of interest. Due to the 

general data protection regulation, we were not allowed to obtain water consumption data on 

household level for the 18,787 georeferenced meters, and they were therefore aggregated into 

groups. It is important that all smart meters within a group discharge water to the same part of the 

sewer system. Thus, the groups were initially based on the catchments from the Elsinore wastewater 

plans. 6% of the 18,787 meters were located outside a wastewater catchment and were thus discard-

ed. Likewise was 14% of the meters were receiving water from other waterworks than Elsinore Wa-

terworks (these neither discharged water to the WWTP of interest). The result was 15,011 meters 

distributed in groups containing each up to 869 meters. We were interested in the flow dynamics in 

especially the area upstream of the in-sewer sensors, and these wastewater catchments were there-

fore further manually sub-divided into in total 111 smaller groups based on the general flow paths 

in the sewer system, as described by the asset database (see the group divisions in Figure 1) with 

between 2 and 38 meters in each group.  
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A list with the meters in each group was provided to Contractor 1 who returned the aggregated 

smart meter water consumption for each group in hourly time steps. 2.4% of the 15,011 meters were 

missing in the files provided by the contractor, of which 45 were located in the area upstream of the 

in-sewer sensors. These meters were missing because they had either not yet been replaced with 

smart meters, or because they were older meters no longer in use. The total water consumption for 

these 45 meters in 2018 was estimated to around 9,500 m3 (corresponding to a yearly average of 0.3 

L/s), which is less than 2% of the water consumption in the area. The final result included 14,694 

smart meters in 245 groups, of which 1,970 smart meters belonged to 111 groups in the area up-

stream of the in-sewer sensors.  

Summed smart meter data 

The ‘summed smart meter data’ was calculated for each of the five in-sewer sensors sub-

catchments, QSM,loc, by summing the smart meter consumption, QSM,loc,i, of the N,loc groups belong-

ing to these sub-catchments at all time steps, t:  

 

Q
SM,loc

(t)=∑ Q
SM,loc,i

(t)

N,loc

i

 (1) 

In this process it was found that a single catchment was missing in the wastewater plans describing 

the ‘EU’ sub-catchment, which would otherwise have led to a mistake in the summed smart meter 

data. The missing catchment is, however, of a limited size.   

Simulated flow 

The sewer system model entry node for the flow from each of the 245 wastewater groups should be 

determined to use the smart meter data for simulating the wastewater flow with the MIKE URBAN 

model, Qsim. Manual identification would be a tedious task; thus, we developed an automated pro-

cedure for affiliating nodes and consumption data. The aggregation of a set of smart meters into one 

group would cause some water consumption to be delayed and some to arrive too fast to the sewer 

system depending on the consumers’ distance to the entry node in the sewer system model. Thus, it 

was decided to add the aggregated smart meter data to the node in the MIKE URBAN that was 

closest to the geometrical centre of each group. The error introduced here should be seen in the light 

of the error present as a result of the relative coarse time step of the smart meter data which is also 

uncertain due to the interpolation. We first imported the nodes from the MIKE URBAN model into 

QGIS and extracted only the nodes (i.e. manholes) labelled as main nodes carrying either 

wastewater or combined waste- and stormwater (excluding parts carrying only stormwater). Subse-

quently, QGIS was used to find the node nearest to the centre of the shape of each group. This in-

formation was extracted using the Distance Matrix tool in QGIS and used to automatically connect 

the 245 water consumption files as boundary conditions to the relevant nodes in the MIKE URBAN 

model using the M1D API (DHI, 2019) in C#. Subsequently, the model was also run using C#, 

which allowed us to calculate the simulated wastewater flow in the entire sewer system model, 

hereunder at the five sensor locations (Qsim,loc), with a one-minute resolution. 
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Phenomena affecting the observed flow 

QSM and Qsim may differ from Qobs if the system is affected by other water inflows and outflows 

than the smart meter-measured water consumption or due to erroneous data.  

To assess these phenomena, the average flows over the one-week time periods (168 hours or 10,080 

minutes) was calculated, where Δtobs=2 min, ΔtSM=1 hr and Δtsim=1 min (Table 1): 

 
Q̅
obs,loc

=
∑ Q

obs,loc
(t)

10,080
t=1 min

10,080 min/Δtobs
 

 

 
Q̅
SM,loc

=
∑ Q

SM,loc
(t)168

t=1 hr

168 hrs/ΔtSM
 (2) 

 
Q̅
sim,loc

=
∑ Q

sim,loc
(t)

10,080
t=1 min

10,080 min/Δtsim
 

 

Furthermore, the mass balances (change in volume, ΔV) were calculated for each of the five sub-

catchments based on the water consumption in the given sub-catchments as well as inflows from 

upstream sub-catchments (Qobs,in,loc) and the outflow (Qobs,out,loc) in the three investigated one-week 

time periods:  

 

ΔVloc= ∑ (Q
SM,loc

(t))∙ΔtSM

168

t=1 hr

+ ∑ (Q
obs,in,loc

(t)-Q
obs,out,loc

(t))∙Δtobs

10,080

t=1 min

 (3) 

A positive mass balance means that more water enters than leaves the catchment (thus, there may be 

a loss of water in the sewer system); a negative mass balance contrarily means that there may be an 

additional source of incoming water. The relative importance of the difference in volume as a func-

tion of the outflow from each sub-catchment was calculated as (Eq. 4): 

 
Rel%=

ΔVloc

∑ Q
obs,out,loc

(t)
10,080

t=1 min

∙100 (4) 

The difference between observed and simulated flows in the five sub-catchments, Qres,loc(t), were 

calculated based on the observed and simulated flows:  

 Q
res,loc

(t)=Q
obs,loc

(t)-Q
sim,loc

(t) (5) 

These residuals may both be positive and negative, and exhibit constant, diurnal or seasonal varia-

tions depending on whether the error is constant, proportional to daily patterns or proportional to 

seasonal patterns. They may also vary according to the outside temperature, previous rainfall and 

pipe geometry. Table 2 lists three overall possible reasons for deviations as well as expected residu-

al patterns while the remaining sections elaborate on the three deviation types.  
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Table 2. Potential reasons for the deviation between observed and simulated sewage flow.  

Deviation type Potential reason  Expected residual pattern 

Observed flow smaller 

than simulated flow 

(negative residuals, Eq. 5) 

Consumed water not discharged to the sewer 
Diurnal  

 

Exfiltration Seasonal  

Observed flow larger 

than simulated flow 

(positive residuals, Eq. 5) 

Unaccounted for consumers  Diurnal  

Pumping of groundwater to the sewer system Constant or seasonal 

Re-use of rainwater Diurnal 

Melting of snow (only in winter) Temperature dependent 

Infiltration 
Constant, seasonal or rainfall 

dependent  

Sedimentation Pipe geometry dependent  

General reasons 

Erroneous smart meters, data transmission or 

data handling 
Constant or diurnal 

Wrong conceptualization of the sewer system  Diurnal  

Erroneous in-sewer sensors Constant or diurnal 

Observed flow smaller than simulated flow (negative residuals, Eq. 5) 

Consumed water not discharged to the sewer. Parts of the consumed water will never enter the 

urban drainage system due to the water being used for drinking, cooking, gardening, etc. Some of 

these, as for instance gardening, is expected to be season dependent. In Denmark, it is expected that 

more than 83% of the consumed water is discharged to the sewer system (Rygaard et al., 2013). 

Since more water is consumed during the day than at night, the residuals will be larger during the 

day and thus exhibit a diurnal pattern. In Elsinore, discrepancies may also arise if ferries, boats, 

trains, etc. take on water in Elsinore but discharge it somewhere else. This may lead to irregular 

residual patterns. 

Exfiltration. Exfiltration from the sewer system may occur when the sewer system is leaky and the 

groundwater level is below the sewer system. The groundwater level is generally lower in the sum-

mer time than during winter, meaning that the exfiltration rate is expected to follow a seasonal pat-

tern with peaks in the summer.  

Observed flow larger than simulated flow (positive residuals, Eq. 5) 

Unaccounted for consumers. Qsim only contains data from consumers that have smart meters in-

stalled. Some consumers may, however, have older meters requiring manual readings. In fact, large 

consumers will often have such meters installed. Such a deviation would exhibit a diurnal pattern 

unless missing industrial users consume water around the clock. In Elsinore, some of the water dis-

charged to the sewer system may furthermore originate from somewhere else, for example, from 

ferries, boats and trains. This may result in irregular residual patterns.  

Pumping of groundwater to sewer system. Elsinore is located by the ocean, and buildings and 

construction sites that are located partly underground may therefore need to pump away groundwa-

ter (and possibly intruding seawater). This water may be discharged into the ocean, infiltrated 

somewhere else, or discharged to the sewer system. Such pumping would most likely occur both 
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day and night leading to a constant deviation. If the groundwater level is only too high in the winter, 

the residual pattern will be seasonal. Sea level variations may, however, also affect the groundwater 

level and thus impact the amount of pumping. 

Re-use of rainwater. Rainwater re-use for toilet flushing, laundry, etc. will increase the flow in the 

urban drainage system compared to what is measured by the smart meters. Rainwater can only be 

used as a substitute water supply in the time following a rain event. Since more water is consumed 

during the day, the residual pattern will follow a diurnal pattern. An increase in consumption from 

the distribution system will be seen again when the rainwater tanks are empty.  

Snow melting. In winter, precipitation falling as snow can cause a delayed runoff into the sewer 

system. The temperature determines when the snow melts, and the residuals will thus neither follow 

a constant, diurnal or seasonal pattern.  

Infiltration. Infiltration into leaky sewers can arise from either groundwater, rain, pumped 

groundwater, or leaky water supply pipes. Groundwater levels change slowly over the course of the 

year, and groundwater infiltration will thus exhibit a seasonal change in the infiltration rate, which 

may also be affected by the sea water level. Rain-induced infiltration will contrarily be visible as an 

increase in the sewage flow only after rain events, which will slowly decline with time. Pumping of 

groundwater to places from where it can infiltrate into the sewer is expected to exhibit a constant or 

seasonal pattern. Leakage from the water distribution system into the drainage system is expected to 

be a function of the pressure in the water distribution system. If the system is pressure controlled, 

the leakages could to some extent display a diurnal pattern, but it will predominantly be constant 

over the day.  

Sedimentation. The flow observations in Elsinore were obtained by multiplying the velocity with 

the wetted area of the cross-section of the pipe. If sedimentation is present at the location of the 

sensor, the water level will raise as a result; thus, leading to a larger calculated than actual flow. The 

residuals will vary in size depending on the geometry of the pipe.  

General reasons for deviations between observed and simulated flows (negative and positive resid-

uals, Eq. 5) 

Erroneous smart meters, data transmission or data handling. Deviations may occur due to er-

roneous smart meter observations. In general, individual meter errors are not likely to have noticea-

ble impact on the simulated results since each consumer only uses a minor fraction of the water in 

each sub-catchment. A general bias of the smart meters could, however, impact the results. Depend-

ing on whether this bias is proportional or additive, it may both show as diurnal pattern or a con-

stant deviation. The smart meters in Elsinore are reported to have a maximum uncertainty of ±5% 

(and thus a proportional, diurnal residual pattern). Furthermore, delayed data transmission and re-

estimation of data due to either missing transmission or time wise unequally distributed data can 

affect the smart meter based results, as well as wrong mapping of the geographical location of the 

smart meters.  

Wrong conceptualization of the sewer system. The conceptualisation of the urban drainage sys-

tem layout is essential to make the correct coupling between the smart meter data and in-sewer sen-
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sors. In this study, the layout is contained in the asset database, which has been used to construct 

both the utility’s wastewater plans and the MIKE URBAN model. If one or more catchments are 

falsely connected to the sewer system upstream of the in-sewer sensors, the simulated flow would 

be larger than the observed. Contrarily, missing connections in the asset database would lead to a 

smaller simulated than observed flow. This deviation would follow a diurnal pattern.  

Erroneous in-sewer observations. In-sewer observations of wastewater velocity, level, and flows 

may be erroneous due to turbulence, presence of solids, aggressive environment (Hager 1994), low 

water depth (Larrarte et al. 2008), or poor calibration. The residuals may both follow a diurnal pat-

tern or be constant. Normally, flow observations are assumed to have uncertainties up to 20% (Ber-

trand-Krajewski et al., 2003), leading to a diurnal residual pattern. 

4. Results and discussion 

Here, we 1) assess if smart meter data can be used to estimate the wastewater component of DWF, 

2) identify anomalies, hereunder other sources to the DWF and erroneous data, by comparing the 

wastewater component with the observed in-sewer flow, and 3) discuss the added value from using 

a HiFi model.  

Assessment of smart meter data for estimation of wastewater flow 

The smart meter data can be used to estimate the wastewater component of the DWF if the smart 

meter data set is trustworthy.  

Figure 2 compares the total outflow from the waterworks, QWW,obs, with the aggregated smart meter 

data from entire Elsinore, QSM,Elsinore. This shows that the smart meters registered on average 14-15 

L/s (15-16%) less water than QWW,obs. This deviation could be due to leakage in the water distribu-

tion network, errors in the waterworks’ flow sensor or in the smart meter data set. The smart meter 

data set may be erroneous either if the data set is incomplete (i.e. there are unaccounted for con-

sumers), if the meters are erroneous, or if the data transmission or subsequent data handling is erro-

neous. 

 
Figure 2. Hourly outflow data from the waterworks (QWW,obs) compared to summed smart meter data 

(QSM,Elsinore) for entire Elsinore (beyond what is shown in Figure 1) for single days in the three time periods.  

The completeness and quality of the smart meter data set was further evaluated by comparing the 

daily inflow to the WWTP, QWWTP,obs, with the simulated inflow to the WWTP, QWWTP,sim, using all 

smart meters in the WWTP catchment (Figure 3). The flow out of the area with in-sewer sensors 

accounted for 20-25% of this inflow. QWWTP,sim is around 1.5 times the one of QWWTP,obs in October 
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and November. This corresponds to on average more than 1,500 m3/day, which seems as an ex-

tremely unlikely amount of exfiltration or an unrealistic volume of consumed water not ending up 

in the urban drainage system. In February, however, QWWTP,sim and QWWTP,obs are very similar. 

QWWTP,sim is in the same range as in October and November, but the QWWTP,obs has increased notably. 

This may be due to infiltration of groundwater in February (winter), but it may also be due to erro-

neous WWTP inlet observations (the WWTP inlet sensor was last calibrated in March 2018) or bi-

ased smart meter data.  

 

Figure 3. Observed (QWWTP,obs) and simulated (QWWTP,sim) wastewater treatment plant (WWTP) inflow in the 

three time periods. 

There are no consumers in Elsinore city centre that has a dominating impact on the wastewater 

flow. Furthermore, there were no major changes in the magnitude or composition of the city’s 

population between 2012 and 2019. It is therefore assumed that the completeness and quality of the 

smart meter data set could also be assessed by comparing the average flow data (Eq. 2) from the 

three time periods to those in the database containing annual water consumption rates from 2012 

(Figure 4). Q̅
sim

 and Q̅
SM

 differ from each other due to water generated in empty pipes of the model 

for the sake of numerical stability and because Q̅
sim

 contains the routing time in the sewer system. 

Overall, both match the database values from 2012 well even though the data is from different 

years. The small decrease from 2012 to 2018/2019 fits well with a general decrease in water con-

sumption in Denmark (DANVA, 2017; Elsinore Municipality, 2019). Figure 4 also shows a large 

difference between the database values and Q̅
obs

. Consumers that have private wells will neither be 

in the database nor have smart meters installed. However, there are no private or commercial wells 

from where the water is subsequently discharged to the sewer system in the area upstream of the in-

sewer flow sensors (Elsinore Municipality, 2019; Pratt, 2019). Overall, the comparison with the 

database indicates that the amount of unaccounted for consumers and uncertainty related to the 

smart meters, data transmission and data handling (Table 2) is limited; meaning that the smart meter 

data set is complete and sufficiently correct to represent the wastewater component of the DWF.   
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Figure 4. Average observed flow (Q̅
obs

), summed smart meter data (Q̅
SM

) and simulated flow (Q̅
sim

) (Eq. 2) 

in each of the three time periods compared to the average consumption from the water consumption database 

from 2012. 

Assessment of anomalies, hereunder other DWF components 

Figure 4 shows that there is a discrepancy between the smart meter based wastewater flows, Qsim 

and QSM, and the observed in-sewer flow, Qobs. To assess possible anomalies, the mass balances for 

the five sub-catchments were calculated for the three time periods (Eq. 3). From Figure 5 it is evi-

dent there are no clear pattern in which catchments are losing or gaining water in the three periods. 

Trusting the observations, 2,000 m3 more water would exit than enter ‘ED’ in October (negative 

mass balance), which could indicate a large external water inflow, for example, infiltration. From 

the percentage (Eq. 4) shown in Figure 5, it is clear that this possible “external inflow” would be the 

main contributor of the outflow stemming from the sub-catchment. This trend corresponds poorly 

with the results for November and February that show a small positive mass balance for ‘ED’. The 

natural variations in groundwater levels and soil moisture that could explain month to month varia-

tions in infiltration would give the opposite pattern since the summer of 2018 was very dry fol-

lowed by a wet winter. ‘CD’ displays some of this expected behaviour but it would be premature to 

draw any conclusions from this considering the large unexplainable variation for the remaining sub-

catchments.  

 

Figure 5. Mass balances for each sub-catchment (Eq. 3) and the relative size of the change in volume com-

pared to the outflow (Eq. 4) for the three time periods. 

Figure 6 shows the time dynamics of Qsim, QSM and Qobs, and is arranged to resemble the flow 

through the sewer system as conceptualised in Figure 1. The flow is naturally smallest in ‘WU’ 

since this is the smallest of the five sub-catchments and does not receive water from any further 

upstream catchments. The axis for this plot is thus scaled differently than the remaining plots. The 

flow increases through the system as more water aggregates. Most of the outflow from the most 

downstream catchment (‘WD’) is generated in the most upstream catchment, ‘EU’, which also by 
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far has the most consumers. The residuals between Qobs and Qsim (Eq. 5) are shown in the upper left 

corner of Figure 6 for all five sub-catchments. 

Figures 4 and 6 show that, for example, the flows in ’WU’ match well in October and November, 

but that there are negative discrepancies between Qobs and the smart meter based flows (QSM and 

Qsim) in ‘EU’ in October and in ‘WU’ in February, and many time periods and sub-catchments with 

positive residuals. In the following we seek to deduct what could be viable courses for the observed 

discrepancies between the various data sources and model results based on Table 2 and Figure 6.  

Exfiltration. Qres,EU exhibits a clear diurnal pattern in October. Exfiltration is, however, not ex-

pected to vary diurnally, but according to season. Furthermore, net exfiltration is not expected to 

occur in February (where the groundwater level generally is higher without also occurring in Octo-

ber and November. Exfiltration can therefore not explain the negative residuals. 

Consumed water not discharged to the sewer system. The diurnal variation in residuals could 

indicate that part of the consumed water is not discharged to the urban drainage system. Qobs,EU on 

average corresponds to less than 60% of Qsim,EU in October, and Qobs,WU to less than 40% of Qsim,WU 

in February. ‘EU’ and ‘WU’ are, however, mostly residential and a greater proportion of the con-

sumed water is therefore expected to end up in the urban drainage system. It is therefore unlikely 

that this is the (main) cause of the negative residuals. 

Pumping of groundwater to the system. Due to the diurnal residual pattern, pumping of ground-

water is not expected to be the cause of the deviation between Qobs and Qsim. Furthermore, the Capi-

tal Region of Denmark (Vormbak, 2019), who stores records of such pumping sites, confirmed that 

no such pumping of groundwater to the sewer is taking place in the area of Elsinore where the in-

sewer sensors are placed.  

Re-use of rainwater. The diurnal residual pattern could stem from rainwater re-use since it was 

raining one, five and two days before the three analysed time periods, respectively (Table 1). Rain-

water re-use is, however, not expected to be the cause of the deviations since there are very large 

variations in the in-sewer flows, and thus in the potential amount of re-used rainwater, between the 

three time periods within the same sub-catchments.  

Snow melting. There was no snow in Elsinore in neither of the three considered time periods. Snow 

melting can thus not explain the deviations between Qobs and Qsim.    
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Figure 6. Summed smart meter data (QSM) and simulated (Qsim) and observed (Qobs) sewage flows in October 

(top panel, Mon-Sat), November (middle panel, Mon-Sun) and February (lower panel, Sat-Fri) (Eq. 1). All 

data is in local time and Qsim and Qobs are displayed with a 30 minutes moving average filter to be able to 

distinguish graphs. Notice the different scales used for ‘Residuals’, ‘WU’ and the four remaining plots.  
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Infiltration. It was raining in the days up to the three time periods (Table 1), but neither rain-

induced infiltration or infiltration from pumped groundwater exhibit diurnal residual patterns; how-

ever, infiltration from a leaking water distribution system might. The gap between Qobs,ED and 

Qsim,ED is on average 14 L/s, 7 L/s and 1.5 L/s in October, November and February, respectively, 

whereas the deviation between the waterworks outlet and consumed water is more or less constant 

over the three time periods (Figure 2). Leakages in ‘EU’ has been recorded in October and Febru-

ary, but Figure 6 shows signs of outflowing, not inflowing, water in the former of these periods, and 

there is only minor deviations between the flows in the latter period. It is therefore not likely that 

leakage from the water distribution system is the main contributor to the deviations between Qobs 

and Qsim. Besides as diurnal pattern, the residuals for ‘WD’ has a more or less constant offset from 

zero which could indicate a constant infiltration from groundwater. The offset is around 20 L/s in 

October and November and 10 L/s in February. Qsim shows that around 5 L/s of this offset stems 

from night consumption. Infiltration is contrarily expected to be larger in February than in October. 

No repair work was carried out for the sewer pipes in ‘WD’ between November and February to 

explain this drop in infiltration. Infiltration does thus not seem to be able to explain the elevated 

observed flows.  

Sedimentation. The pipe in which the ‘WD’ flow sensor was located is heavily influenced by sed-

imentation, which could result in the constant offset from zero. The sediment was, however, not 

removed between November and February to explain the drop in the offset level, but the amount of 

sediment may have been affected by the stormwater flow in the sewer system.  

Wrong conceptualization of the sewer system. A missing pipe or pump in the wastewater plans, 

which in reality connects another catchment to one of the five sub-catchments, would expectedly 

lead to similar residuals in all three time periods. This is not the case, and the conceptualization is 

thus not considered to cause the deviations.  

In-sewer observations. Erroneous in-sewer observations remain the only likely explanation for the 

deviations between Qobs and Qsim. The observed flow changes greatly from time period to time peri-

od; for example, Qobs,CD is much larger than Qsim,CD in October and February but fits well in the in-

tervening period in November. Looking at October, there is only one day where Qobs,ED and Qsim,ED 

match; however, this is due to faulty velocity observations. Contrarily, the water consumption, as 

expected, more or less follows the same diurnal pattern throughout October, November and Febru-

ary. Additionally, the erroneousness of in-sewer observations is supported by the fact that Qobs out 

of ‘WD’ on average is 21 L/s and 25 L/s larger than Qsim in October and November, respectively. 

Adding this amount on top of QWWTP,sim would only exacerbate the difference to QWWTP,obs (Figure 

3). It is therefore expected that the in-sewer sensors are the main contribution to the deviation be-

tween simulated and observed sewage flows. These deviations are at times even larger than what is 

considered ‘normal’ deviations of 10–20%.  

Figure 7 shows the relationship between the deviation between Qobs and Qsim in the three time peri-

ods and the time since the last calibration of the in-sewer sensors. It is clear that no such correlation 

exists, neither within each time period or when comparing each location across the three time peri-

ods. 
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Figure 7. Days since last calibration of in-sewer sensors compared to the difference between observed flow 

(Qobs) and simulated flow (Qsim) calculated as the mean absolute error for the three time periods.  

Added value from using a HiFi model 

A HiFi model pose an easy way of coupling smart meter data and in-sewer observations and can 

eliminate errors stemming from incorrect wastewater plans and s. Furthermore, it is possible to in-

clude infiltration/exfiltration dynamics and thus make a better comparison between the simulated 

and observed data, which will not be possible when simply summing the smart meter data. 

Figure 8 shows Qobs,CD, QSM,CD and Qsim,CD for three days in each of the considered time periods. 

The timing of the observed flow is considered reliable, despite the magnitude of the wastewater 

flow being off as a result of the erroneous in-sewer observations. It is clear that the routing of the 

smart meter data through the MIKE URBAN model catches the timing of the observed peaks and 

low flows much better than simply aggregating the smart meter data. The dynamics shown in Figure 

8 are representative for the entire dataset for all five flow observation locations. The difference in 

time between the summed smart meter data and the simulated flow will naturally be more pro-

nounced the longer the water has travelled in the system and thus depends on the size of the catch-

ment upstream of the flow observations.  

 

Figure 8. Observed sewage flow (Qobs) compared to simulated flow (Qsim) and summed smart meter data 

(QSM) for three days in each of the three time periods for the ‘CD’ catchment. 

Limitations and outlook 

This study shows that smart meter data may be used to represent the wastewater flow. This ap-

proach may be more robust than using in-sewer observations since the failure of one sensor will 

likely not disturb the bigger picture (unless it is a very large consumer), whereas the failure of one 

in-sewer sensor leaves one left with no real-time data in that specific location. The subsequent 

search for system anomalies by linking water supply smart meter data with in-sewer measurements 

is a tedious process due to the many aspects affecting both the water distribution and urban drainage 
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systems, such as missing consumers and sedimentation (see Table 2), and it is laborious to system-

atically gain access to and compare all relevant data sources. This was further complicated by the 

fact that not one person could access all the models and data as they were managed and stored in 

different silos both within the utility and by different contractors. 

It would be necessary to perform independent and reliable flow observations at the five locations, 

possibly manually, to validate that the in-sewer flow observations caused the deviation to the smart 

meter simulated wastewater flow. This is, however, not possible since the measurement campaign 

in the urban drainage system was terminated in June 2019. It would also require independent obser-

vations to investigate if the offset in ‘WD’ is due to sedimentation or infiltration. These could be 

measurements of the sedimentation height (which could be incorporated into the urban drainage 

model and thus included in the simulated flow results), measurements of the groundwater level 

could (which could show the potential for infiltration and exfiltration), or CCTV footage.  

Many utilities are currently taking first steps towards using data in new, and more integrated, ways. 

This study shows that digitalisation is not easy, and sometimes the actual data quality remains un-

known until the data is actually used and compared with other data sources. This process will pro-

vide important learnings regarding good practices within sensing and data accessibility, and enable 

the utility and their contractors to further refine their work processes.  

5. Conclusions 

The current study aimed at using smart meter water consumption data to simulate the wastewater 

flow, and to combine this information with in-sewer observations to detect system and data anoma-

lies, such as infiltration, exfiltration, sensor errors or a wrong conceptualization of the system.  

The smart meter data was validated with data from other independent sources, hereunder data from 

the waterworks outflow, WWTP inflows, and households’ annual water consumption audits. Sub-

sequently, it was used as input to a 1D hydrodynamic urban drainage model to simulate the 

wastewater component of the DWF flow. The wastewater flow was thus obtained with a large spa-

tial and temporal resolution. A 1D hydrodynamic model presented an easy way of coupling smart 

meter data and in-sewer flow observations compared to manual summation of smart meter data 

based on wastewater plans; a procedure prone to human errors. The main difference in the results 

between simply summing up the smart meter data and using an urban drainage model was the inclu-

sion of the routing time in the sewer system. If time dynamics are insignificant, a simple summation 

may be sufficient.  

Time dynamics are important when comparing the smart meter based wastewater flow with ob-

served in-sewer DWF to estimate the contribution from other input sources (infiltration, pumping of 

groundwater to the system, rainwater re-use or snow melts) or outputs (exfiltration). This requires at 

least one reliable downstream in-sewer observation, and preferably more. In this study, the validat-

ed smart meter data was used to identify erroneous in-sewer flow observations. This was supported 

by the comparison with WWTP inlet data. The degree of uncertainty of these in-sewer observations 

at times exceeded the expected uncertainties of 10-20%.  
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The erroneous in-sewer observations prohibited the assessment of other input and output water 

sources. Still, validated smart meter data coupled with a 1D urban drainage model provides a first 

‘best guess’ of the flow in the system during dry weather, and the study presents an important step 

towards closing the water balance in urban drainage systems.  

The coupling between smart meter data and urban drainage models can be done offline for post-

analysis of the data and system performance (as done in this study), but the coupling could also be 

done, and the urban drainage model run, in real time to get an up-to-date picture of the system state 

for enhanced real-time decision-making.    
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