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Abstract. In this chapter, we introduce optimization methods for pro-
duction scheduling and power market participation for district heat-
ing systems under uncertainty. We present an optimization model for
scheduling the production units using mixed-integer linear programming
and stochastic programming. Based on the optimal production schedul-
ing, the bidding amounts and prices to the day-ahead market are deter-
mined using an extension of the model. Results are shown for a demo
case of a Danish district heating system.
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1 Introduction

We focus on the operational production planning of the district heating (DH)
operator. Usually, the operator has a set of different heat production units at
their disposal to fulfill the heat demand in the network. Those units can be heat
production units converting an input energy carrier to only heat, or combined
heat and power (CHP) units that produce heat and power simultaneously. The
input energy carriers can be, for example, natural gas, electricity or wood chips.
Further sources of heat available to the DH operator can be solar thermal units
or industrial waste heat. With an increasing number of small-scale production
units, changes in heat demand, volatility in electricity prices and heat produc-
tion from renewable energy sources (RES) as well as the availability of storage
possibilities, the production planning becomes a complex optimization problem
for the DH operator. This is in particular the case for low-temperature district
heating systems (DHS), since there, the inclusion of heat pumps as well as waste
heat and and solar thermal production is widely used [14, 12]. Furthermore, the
production moves from a few central units to many smaller central and decen-
tralized units [12]. Therefore, a large number of units need to be dispatched while
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many of them are coupled to the electricity markets. Additionally, production
of RES units is uncertain at the time of planning.

In the remainder of this chapter, we first present an optimization model
to dispatch the units under uncertain conditions. Secondly, we will focus on
how the production optimization can be used to determine electricity market
bids of market-dependent units. The planning problem is formulated using the
time scale relevant to the market. For example, the day-ahead electricity market
Elspot of the Nordic electricity market has hourly planning intervals [19]. Here,
the hourly dispatch of the units is of interest for the DH provider. The models and
methods presented in this chapter are applicable to any length of market periods.
The bidding method explained in Section 3 relates to a deregulated wholesale
electricity market where the market is cleared and the price is determined based
on the intersection between supply and consumption bids. For instance, all bids
to Elspot have to be submitted before noon the day before energy delivery.
Then the market operator calculates the market clearing price for each hour
individually by sorting all production bids in ascending order of price and the
consumption bids in descending order of price. The market clearing price is the
price at which both curves meet [19]. In other market settings such as regulated
electricity systems, the bidding method may be obsolete. However, the dispatch
model presented in Section 2 based on electricity prices is still relevant. In Section
4, we present results of the optimization for a representative week in October
2020 in the Danish DHS in Brønderslev.

2 Mathematical Optimization for Operational Production
Planning

The operational production optimization or economic dispatch of units in a DHS
can be formulated and solved using a mixed-integer linear program (MILP) as
several publications show. For example, [5] and [22] formulate different MILPs
to schedule CHP production units in connection with boilers, thermal storage
tanks and solar heat units. The models are used for cost evaluations, therefore,
the authors investigate predetermined price and solar heat scenarios using a
deterministic model. [13] optimize an integrated power and heating system in-
cluding a wind farm, a heat pump that can be produce based on the wind power
production and a CHP unit. They model this particular system including the
connected DH and power systems.

To appropriately consider uncertain prices and production in the operational
planning, we move from a deterministic model to stochastic programming. For
example, [15] optimize the operation of CHP units in combination with electric
boilers and heat pumps under heat demand and electricity price uncertainty. An
overview of models and optimization methods for DH is given in [20].

Here, we also formulate the dispatch problem as a two-stage stochastic pro-
gram [1] using a MILP. It is considered a stochastic program since at the time
of optimization, electricity prices as well as heat production from solar heat and
waste heat are still unknown. Heat demand is considered deterministic one day
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in advance, since it can be predicted quite accurately by the methods shown
in Chapter 6. The mathematical formulation that is presented in this section is
adapted from the model formulations described in [3] and [21]. An overview of
the nomenclature is given Table 1.

We are presenting the dispatch optimization problem for a typical DH sys-
tem which contains several types of heat production units, given by the set U .
Some units are dependent on the electricity markets, because they are either
CHP units UCHP producing electricity or operated with electricity UEL, e.g.,
heat pumps or electric boilers. There could be other units UN for which the pro-
duction is determined by external factors and are therefore non-dispatchable,
e.g., solar thermal units or waste heat injection. The remaining units UH are
heat production units independent of the electricity market and can be freely
scheduled within their capacities, e.g., biomass or gas boilers. All types of units
are taken into account when fulfilling heat demand. In this planning problem,
the network is abstracted by considering several demand sites D with given heat
demand for each time period T . Thus, the demand is represented in terms of
energy where supply temperatures are taken into account when calculating the
heat demand. We distinguish several demand sites to model features of the net-
work topology, e.g., that not all units can reach all demand sites. The goal is to
fulfill the heat demand at all demand sites in all scenarios Ω of electricity prices
and heat inflow from non-dispatchable units. Additionally, the DH operator can
use heat storage tanks S to store heat from one period to the next.

The decisions that have to be taken are:

– heat production qu,t,ω of each unit u ∈ U in each period t ∈ T and scenario
ω ∈ Ω and how this production is distributed to the demand sites (xUD

u,d,t,ω)

and storage tanks (xUS
u,s,t,ω).

– storage levels δs,t,ω of each storage tank s ∈ S in each period t ∈ T and sce-
nario ω ∈ Ω and the usage of the storage for fulfilling the demand (xDS

d,s,t,ω).
– commitment decisions for units with minimum up- and down times that are

given by the set UC ⊆ U . Commitment decisions are the on/off status (yu,t,ω)

as well as the periods where a unit is started (yStartu,t,ω) or stopped (yStopu,t,ω).

The objective function (equation (1)) minimizes the expected operational
cost of heat production taking heat production (CH

u ) and start-up costs (CS
u) as

well electricity purchases of electricity-driven units and electricity sales of CHP
units into account. The electricity prices (λt,ω) are considered uncertain and the
power production/consumption is calculated based on the heat production and
the heat-to-power ratio ϕu. The costs are weighted with the probability (πω) of
the respective scenario.

Min
∑
ω∈Ω

πω

∑
t∈T

[∑
u∈U

CH
u qu,t,ω +

∑
u∈UC

CS
uy

Start
u,t,ω

+
∑

u∈UEL

λt,ωϕuqu,t,ω −
∑

u∈UCHP

λt,ω
qu,t,ω
ϕu

]
(1)
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Table 1: Nomenclature

Sets

T = {1, ..., |T |} Set of time periods t
U Set of heat production units u, U = UCHP ∪ UEL ∪ UH ∪ UN

UCHP ⊂ U Subset of CHP production units
UEL ⊂ U Subset of electricity-based production units
UH ⊂ U Subset of heat-only production units
UN ⊂ U Subset of non-dispatchable production units
UC ⊂ U Subset of production units needing commitment decisions
D Subset of demand sites
S Set of heat storage tanks s
Ω Set of scenarios ω
B Set of block bids b

Parameters

CH
u Cost for producing heat with unit u ∈ U [EUR/MWh]

CS
u Start-up cost of unit u ∈ UCHP [EUR]

Q
u
, Qu Minimum and maximum heat production for unit u ∈ U [MW]

∆UT
u ,∆DT

u Minimum up- and down-time of unit u ∈ UCHP [time periods]
AUD

u,d Binary parameter: 1, if unit u ∈ U is connected to demand site
d ∈ D, 0 otherwise

AUS
u,s Binary parameter: 1, if unit u ∈ U is connected to the thermal

storage s, 0 otherwise
ASD

s,d Binary parameter: 1, if storage tank s ∈ S is connected to demand
site d ∈ D, 0 otherwise

φu Heat-to-power ratio for unit u ∈ UCHP [MWh/MWhe]
SI
s, S

T
s Initial and target storage level in storage s [MWh]

Ks Capacity of storage s [MWh]
ls Losses per period in storage s (%)
λt,ω Electricity price for time period t ∈ T and scenario ω ∈ Ω

[EUR/MWhe])
Bd,t Heat demand at site d ∈ D in time period t ∈ T [MWh]
Iu,t,ω Stochastic heat input from heat production unit u ∈ UN in period

t ∈ T and scenario ω ∈ Ω [MWh]
πω Probability of scenario ω ∈ Ω
H Time-factor, fraction of one hour
vb,ω value of bid b ∈ B in scenario ω ∈ Ω
ab bidding quantity of bid b ∈ B

Variables

yu,t,ω ∈ {0, 1} Binary variable, status of unit u ∈ UCHP and period t ∈ T , 1 = on,
0 = off

yStart
u,t,ω ∈ {0, 1} Binary variable, 1 if unit u ∈ UCHP is started period t ∈ T , 0

otherwise

yStop
u,t,ω ∈ {0, 1} Binary variable, 1 if unit u ∈ UCHP is stopped period t ∈ T , 0

otherwise
qu,t,ω ∈ R+ Heat production of unit u ∈ U in period t ∈ T and scenario ω ∈ Ω

[MWh]
xUD
u,d,t,ω ∈ R+ Heat flow from unit u ∈ U to demand site d ∈ D in period t ∈ T

and scenario ω ∈ Ω [MWh]
xUS
u,s,t,ω ∈ R+ Heat flow from unit u ∈ U to storage s ∈ S in period t ∈ T and

scenario ω ∈ Ω [MWh]
xSD
s,d,t,ω ∈ R+ Heat flow from storage s ∈ S to demand site d ∈ D in period t ∈ T

and scenario ω ∈ Ω [MWh]
σs,t,ω ∈ R+ Storage level of storage s ∈ S in period t ∈ T and scenario ω ∈ Ω

[MWh]
zb ∈ {0, 1} Binary variable, 1 if bid b is selected, 0 otherwise
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Constraint (2) ensures that the heat demand (Bd,t) of each demand site is
fulfilled by heat flow either directly from the production units or the storage
tanks. Constraint (3) distributes the production from each unit either to the
demand sites or the storage tanks. Heat flow between components that are not
possible are excluded by constraints (4) to (6) by using the binary parameters
AUD

u,d , A
US
u,s and ASD

s,d (being 1, if there is a connection, 0, otherwise) and the

maximum capacities of units Qu and storage tanks Ks.∑
u∈U

xUD
u,d,t,ω +

∑
s∈S

xSD
s,d,t,ω = Bd,t ∀d ∈ D, t ∈ T , ω ∈ Ω (2)

qu,t,ω =
∑
d∈D

xUD
u,d,t,ω +

∑
s∈S

xUS
u,s,t,ω ∀u ∈ U , t ∈ T , ω ∈ Ω (3)

HxUD
u,d,t,ω ≤ AUD

u,dQu ∀u ∈ U , d ∈ D, t ∈ T , ω ∈ Ω (4)

HxUS
u,s,t,ω ≤ AUS

u,sQu ∀u ∈ U , s ∈ S, t ∈ T , ω ∈ Ω (5)

xSD
s,d,t,ω ≤ ASD

s,dKs ∀s ∈ S, d ∈ D, t ∈ T , ω ∈ Ω (6)

The production of the units is limited to its maximum capacity (Qu) in con-
straints (7). For CHP units, the production is further restricted by the unit’s
online status (constraint (8)). The online status yu,t,ω is equal to 1 if unit u is
running in time step t and zero otherwise. Correspondingly, the startup (shut-

down) status yStartu,t,ω (yStopu,t,ω) indicates whether unit u is started up (shut down) in
time step t. This is set in constraint (9), while constraint (10) disallows simulta-
neous startup and shutdown of the same unit. Constraints (11) and (12) ensure
the minimum up- and down-time (∆UT

u and ∆DT
u ) requirements, respectively.

Finally, the production of non-dispatchable units is limited by the production
(Iu,t,ω) in the given scenario (constraint (13)).

Hqu,t,ω ≤ Qu ∀u ∈ U\UCHP, t ∈ T , ω ∈ Ω (7)

Q
u
yu,t,ω ≤ Hqu,t,ω ≤ Quyu,t,ω ∀u ∈ UCHP, t ∈ T , ω ∈ Ω (8)

yu,t,ω − yu,t−1,ω = yStartu,t,ω − yStopu,t,ω ∀u ∈ UCHP, t ∈ T \{1} (9)

yStartu,t,ω + yStopu,t,ω ≤ 1 ∀u ∈ UCHP, t ∈ T (10)

t∑
τ=t+1−∆UT

u

yStartu,τ,ω ≤ yu,t,ω ∀u ∈ UCHP, t ∈ T (11)

t∑
τ=t+1−∆DT

u

yStopu,τ,ω ≤ (1− yu,t,ω) ∀u ∈ UCHP, t ∈ T (12)

qu,t,ω ≤ Iu,t,ω ∀u ∈ UN, t ∈ T , ω ∈ Ω (13)

The storage level is updated according to in- and outflow and losses (ls) in
each period in constraints (14) and (15) depending on whether it is the initial
period or not. The storage level must be below the capacity (Ks) in all periods
(constraint (16)) and above a certain target (ST

s ) at the end of the planning
horizon (17).
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δs,1,ω = lsS
I
s +

∑
u∈U

xUS
u,s,1,ω −

∑
d∈D

xSD
s,d,1,ω ∀s ∈ S, ω ∈ Ω (14)

δs,t,ω = lsδs,t−1,ω +
∑
u∈U

xUS
u,s,t,ω −

∑
d∈D

xSD
s,d,t,ω ∀s ∈ S, t ∈ T \{1}, ω ∈ Ω (15)

δs,t,ω ≤ Ks ∀s ∈ S, t ∈ T , ω ∈ Ω (16)

δs,|T |,ω ≥ ST
s ∀s ∈ S, ω ∈ Ω (17)

Finally, production of the units connected to the electricity market needs
to be decided now while the prices and renewable production is still uncertain.
Therefore, the decisions on production and commitment for CHP units and
electricity-based units needs to be equal in each scenario. This is ensured by
constraints (18) and (19).

qu,t,ω = qu,t,ω′ ∀ω, ω′ ∈ Ω, u ∈ UCHP ∪ UEL, t ∈ T (18)

yu,t,ω = yu,t,ω′ ∀ω, ω′ ∈ Ω, u ∈ UC ∩ (UCHP ∪ UEL), t ∈ T (19)

Please note that it can be reasonable to extend the model’s time horizon beyond
the actual planning horizon of interest in order to take storage behaviour over
several days into account. [8] and [2] identified a time horizon of five and seven
days as most fitting for their respective applications. The model can then be
applied in a rolling horizon manner. For example, if we are interested in planning
the first day in advance, we can consider seven days to account for storage
behaviour. When we plan for the second day, we move the entire time window
by one day and consider days two to eight in the model.

The model formulation can both be used for operational production planning
and as a basis for optimizing bids to electricity markets such as the day-ahead
market, as we further discuss in Section 3.

3 Bidding to Electricity Markets

DH providers have the possibility to further reduce their operational costs by
participating in the electricity markets. They can sell electricity production from
CHP units in hours with high electricity prices or they can produce heat from
electricity, e.g., through electric boilers or heat pumps, in hours with low elec-
tricity prices. To participate in the market, the DH provider has to determine
bids that are defined by bidding price (EUR/MWhe), bidding amount (MWhe)
and valid hour(s).

In general, the DH provider can use bidding methods proposed for bidding
of thermal power producers and CHP units to determine the bidding amount for
CHP units. For example, [6] and [18] base their bidding prices and amounts on
the electricity price forecasts for the next day by solving MILPs containing the
price information at certain confidence intervals. The models return the bidding
amount at the respective prices. [4] and [11] assume a pre-defined set of bidding
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prices and use a stochastic program to determine the bidding amount per unit
at each price. [7] use price scenarios to determine the bidding amount for each
scenario. The prices and amounts are used to create bidding curves. A similar
concept is used in [16], where the authors group several power production units
in a Virtual Power Plant (VPP) and bid for them to the day-ahead market and
balancing markets based on price scenarios. This concept is adapted for a DH
application in [3]. In the context of DH, [17] and [2] use the difference in oper-
ational production costs between heat-only units and CHP units to determine
the bidding price. This is also the concept that we will present here.

The above-mentioned literature focuses on hourly bids to the markets. How-
ever, in many markets it is also possible to group several hours together and bid
them jointly to the market in so-called block bids, i.e., all hours have the same
price and amount and can only be accepted or rejected in total. [10] and [9]
create blocks bid for hydro power units by creating all possible hour blocks and
determine the production amounts by optimizing the amount for different price
scenarios in a stochastic program. [21] use a similar technique for DH by using
the price difference in heat production units as basis for bidding. This concept
will also be presented in the remainder of this section.

3.1 Unit-switching prices

Since the primary goal of the DH operator is to provide the heat demand in the
network at lowest cost, we are looking at a cost-minimization problem. There-
fore, the bidding to electricity market should be based on the principle that the
participation in the electricity market is a means of cost reduction. We can apply
a risk-averse bidding strategy by ensuring that we only submit bids that would
lower our operational production costs in case they are accepted. Therefore, the
bidding prices and amounts to the electricity market should be based on the
heat production as shown in [2].

To determine the bidding prices based on the heat production setup at the
DH plant, we consider what we call unit-switching prices. The unit-switching
price is calculated between all heat-only units (UH) and market-dependent units
(UCHP ∪ UEL). The unit-switching price is the electricity price above (for CHP
units) or below (electricity-driven units) which the heat production gets cheaper
than with the respective heat-only unit (see [2] and [21] for CHP units). Figure
1 shows unit-switching on the example of a CHP unit, an electric boiler and a
gas boiler for the Brønderslev system. Net heat production costs, meaning costs
of producing heat minus power market revenues (in the case of a CHP unit) or
power purchase costs (in the case of an electric boiler) are plotted on the y-axis
with the corresponding electricity prices on the x-axis. The costs for the gas
boiler stay flat whereas the curves for the CHP unit and electric boiler show a
downward (upward) slope. The intersection points of these curves correspond to
the unit-switching prices.
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Fig. 1: Example of unit switching prices in Brønderslev system.

3.2 Generating sets of possible bids

If we assume that the market-dependent units always produce at full capacity
due to efficiency reasons, the bidding amounts are fixed. This is assumption can
be made for the rather small units in DHS. Furthermore, since the prices can be
calculated based on the operational heat production costs, the set of all possible
bids to the electricity market can be generated. While generating the sets of
possible bids, hourly bids but also block bids (grouping several hours together as
one bid) can be considered. The procedure iterates through all market-dependent
units and creates bids of all valid lengths, e.g., 1 hour or minimum three hours
for block bids. The bidding amount is the capacity of the unit. Then for each
unit-switching price of this unit with all heat-only units, a bid is generated. We
refer to [21] for an extensive description of the bid generation. In case the unit
has start-up costs, those are added to the bidding price by distributing them
evenly across the bidding period.

3.3 Selection of bids to submit

Since not all possible bids can be submitted to the market due to capacity
restrictions and a limited heat demand, we need to select a subset of bids. We
can use the model presented in constraints (1) - (19) for the optimal selection of
bids for a set of electricity price scenarios given in the set Ω. Let B denote the
set of all possible bids. The bids in B can be distinguished in production bids BP

for CHP units and consumption bids BC for electricity-consuming units. Then
the value vb,ω of bid b in scenario ω is defined as equation (20) or (21) depending
on whether it is a producing or consuming unit, respectively, see [21] for the
original definition.
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vb,ω =

{
−ab

∑
t∈Tb

λt,ω, if pb ≤
∑

t∈Tb
λt,ω

|Tb| ,

0, otherwise
∀b ∈ BP, ω ∈ Ω (20)

vb,ω =

{
ab

∑
t∈Tb

λt,ω, if pb ≥
∑

t∈Tb
λt,ω

|Tb| ,

0, otherwise
∀b ∈ BC, ω ∈ Ω (21)

where ab is the hourly bidding amount of the bid, Tb are the time periods
of the bid and pb is the bidding price (i.e. the unit-switching price). This means
that the value of the bid is the income from (negative values) or price on the
electricity market (positive values) in case the bid is accepted for production
and consumption bids, respectively (i.e. the bidding price was above/below the
average bidding price in the respective hours) and zero otherwise.

The following changes have to be made to the dispatch model: We add a set
of binary variables zb ∈ {0, 1} that decide whether a bid b is selected (zb = 1) or
not (zb = 0). zb represents a first-stage decision in the stochastic program.

The income from the electricity markets in the objective function now de-
pends on the bidding behaviour. Therefore, the original objective function (equa-
tion (1)) is changed to equation (22) using the value of the bid.

Min
∑
ω∈Ω

πω

∑
t∈T

[∑
u∈U

CH
u qu,t,ω +

∑
u∈UC

CS
uy

Start
u,t,ω

]
+

∑
b∈B

∑
ω∈Ω

πωvb,ωzb (22)

In case a bid b is selected, we have to ensure the bidding amount ab is
produced by the related unit ub in the hours of the bid Tb. This is modelled
by constraints (23). Finally, we have to exclude conflicting bids, i.e., bids that
would require the same unit in the same hour. All conflicting bids to a bid b are
collected in the set B̂b and can therefore be excluded in constraints (24).

abzb = qub,t,ω ∀b ∈ B, t ∈ Tb, ω ∈ Ω (23)

zb1 + zb2 ≤ 1 ∀b1 ∈ B, b2 ∈ B̂b1 (24)

Thus, the full model for minimizing the expected operational cost including bid
selection is described by equation system (25).

Min (22)

s.t. (2)− (19) (25)

(23)− (24)

4 Demo Case

For the demo case in this chapter, we use data from a week in October 2020 in
the Brønderslev DHS in a slightly modified version for readability. We optimize
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the daily operation for one week (i.e. 168 hours) by running the model with a
daily rolling horizon and planning period of 168 hours to account for storage
behaviour.

The system contains 12 different units here given in descending order of
operational cost (at a power price of 0 EUR/MWh): 7 small-scale CHP plants
(CHP1-CHP7) each with a heat production capacity of 3.9 MW, two combined
units of wood chip boilers with heat pumps (WCB+HP1 and WCB+HP2) each
with a heat production capacity of 11 MW, one 35 MW natural gas-fired boiler
(GB), one electric boiler (EB) producing up to 20 MW heat and one solar thermal
unit (Solar). All of the units are connected to a storage unit with a capacity of
360 MWh. From the storage unit, three demand sites with at total of approx.
4800 customers can be supplied with heat.
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(a) Heat demand at the three demand sites
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(b) Electricity price scenarios
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(c) Solar thermal production scenarios

Fig. 2: Input data for the week in October 2020 (hourly scale)

The heat demand at the three demand sites assumed to be known and dis-
played in Figure 2a. The series follows a typical pattern with peaks in the morn-
ing and evening. We use five scenarios that contain the uncertain information
about day-ahead market electricity prices and solar thermal production. The
scenario data is depicted in Figures 2b and 2c, respectively. For the following
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experiments, we assume that electricity can be sold on the day-ahead market
using block bids with a minimum length of two hours. The heat pumps buy
electricity at a fixed electricity price, while the electric boiler uses consumption
bids to the day-ahead market.

4.1 Optimal dispatch without electricity market

Figure 3 shows the optimal production schedule for the real realization of the
electricity prices and solar production when no income and buying from the
electricity market is considered. To accomplish that, we have solved the stochas-
tic program in Section 2 with five scenarios without the possibility of selling
and buying on the day-ahead market. Afterwards, the dispatch of the units con-
nected to the market is applied to the real prices and solar production. The heat
production of the different heat generation units is displayed as an area chart.

We can see that heat generation from the gas boiler follows the demand
curve most of the time. Solar heat supplies heat in the periods it is available.
The mismatch between solar heat generation and heat demand is covered by
heat storage.
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Fig. 3: Baseline dispatch without market participation for the week in October
2020

4.2 Optimal dispatch including block bidding.

In order to generate a set of possible bids to choose from (Sect. 3.1), unit-
switching prices the CHP units and the other heat generation units have to be
computed. The corresponding values are shown in Table 2.
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Unit Electric boiler Gas boiler WCB+HP Solar

Switching price [EUR/MWh] 21.54 45.16 9.15 113.88

Table 2: Unit-switching prices between CHP units and the other heat producers
in the Brønderslev system.

Figure 4 shows the heat dispatch when block bidding from CHP units and
the electric boiler is included. In comparison to the baseline without block bid-
ding (Fig. 3), mainly heat production from the gas boiler is replaced as power
prices during the week of interest often exceed the unit-switching price of 45.16
EUR/MWh.
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Fig. 4: Heat dispatch for the week in October 2020

The heat production corresponds to the co-generation of power (Fig. 5) from
the seven CHP units in the hours where bids are won. Since power production
is more economically viable during hours of high market prices, power produc-
tion, and correspondingly heat production, does not follow heat demand. This
mismatch between demand and supply is larger than previously (Fig. 3) and
is compensated by the system’s heat storage. Furthermore, the electric boiler
consumes electricity some hours with low market prices (Fig. 6).
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Fig. 5: Electricity production for the week in October 2020
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Fig. 6: Electricity consumption for the week in October 2020
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19. Rothwell, G., Gómez, T.: The Norwegian and Nordic Power Sectors, pp. 161–186
(2003). https://doi.org/10.1109/9780470544495.ch7

20. Sarbu, I., Mirza, M., Crasmareanu, E.: A review of modelling and optimisation
techniques for district heating systems. International Journal of Energy Research
43(13), 6572–6598 (2019). https://doi.org/10.1002/er.4600

21. Schledorn, A., Guericke, D., Andersen, A., Madsen, H.: Optimising block bids
of district heating operators to the day-ahead electricity market using stochastic
programming. Smart Energy 1 (2021). https://doi.org/10.1016/j.segy.2021.100004

22. Wang, H., Yin, W., Abdollahi, E., Lahdelma, R., Jiao, W.: Modelling
and optimization of CHP based district heating system with renewable en-
ergy production and energy storage. Applied Energy 159, 401–421 (2015).
https://doi.org/10.1016/j.apenergy.2015.09.020


