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Abstract. In this chapter, data-driven methods for the efficient oper-
ation of DHSs are described. DHSs are inherently non-linear and time-
varying systems as the heating demand is highly influenced by non-linear
dependencies on the weather conditions as well as the occupancy be-
haviour. Furthermore, the dependency on flow and temperature in deliv-
ering the needed heat demand using the district heating network gives a
non-linear dependency on these two signals. This chapter presents several
data-driven models to handle the non-linear and time-varying phenom-
ena in order to ensure an efficient operation. First, we introduce forecasts
that are used to reach an optimal operation as forecasts are needed for
both control and production planning, e.g heat demand and electricity
price forecasts. Second, temperature control of a DHN will be introduced
with a focus on how the physical characteristics of the network can be
incorporated into a control scheme. A special focus will be on how to
ensure that the temperatures in the network are high enough to ensure
the needed heat supply for the attached buildings in the entire district
heating network is met. We shall also briefly look at the role of smart
buildings integrated into a DHN that can be used to enhance the effi-
ciency and flexibility of a DHS.

Keywords: Data-Driven Methods · Adaptive Control · Heat Load Fore-
casting · Temperature optimization · Sector Coupling · Renewable En-
ergy · Flexibility.
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1 Introduction

The transition to a low-carbon society calls for fundamental changes in the en-
ergy system. Today energy systems are operated and planned such that the
production follows the demand. However, an efficient implementation of a low-
carbon society calls for the exact opposite approach, namely systems where de-
mand follows production which will be dominated by renewables. This highlights
a need for new methods for planning and operation of energy systems. Most im-
portantly the flexibility at virtually all types of end-users on all aggregation
levels has to be unlocked. The typical variation in time of the energy produced
by wind and solar power implies a need for flexibility that can be offered by well
designed district heating and district cooling systems, and with the increased siz-
ing of the district heating systems even seasonal energy storage solutions often
become feasible.

The examples used in this chapter originate from Denmark. The history of
Danish district heating is more than 100 years old and today about 65% of
the households in Denmark are supplied with district heating. What started
as a way of getting rid of waste in an efficient way is today a billion-dollar
business and a cornerstone in the Danish energy system. In Denmark in 2020
more than 50% of the electricity load was covered by wind power, and this
implies a further need for flexibility which effectively can be offered by the district
heating system. The methods and results described in this chapter originates
from a large number of national research and innovation projects like HEAT
4.0[3], CITIES[1], FED[2] and IDASC[13]. We refer to the homepage of these
projects for further information.

In the first generation of energy systems, central power plants were estab-
lished to deliver electricity, leading to huge energy losses in the form of waste
heat. In the next step, this ’waste heat’ was utilised in the form of district heat-
ing by introducing combined heat and power plants (CHPs), an environmental
leap step towards a sustainable future. District heating developed since to a 4th

generation, where intermediate renewable energy sources and waste heat from
industrial and other sources are utilised. To accommodate the mentioned sources
efficiently, the district heating operation has to be adjusted to low-temperature
operation, improving the efficiency of the whole system.

Diversity in production, large district heating networks, advanced distribu-
tion and time-varying demand side characteristics, result in increased complex-
ity. Digitalisation is proposed to facilitate the transformation from a rather sim-
ple to a highly complex system. Digitalisation introduces new possibilities and
hereby complexities, naming wireless monitoring with Internet of Things (IoT),
increased connectivity and communication, Artificial Intelligence (AI) and big-
data analytics, systems-of-systems, and distributed system layouts with cloud-,
fog- and edge computing. Digitalisation and the increased possibility of getting
frequent sensor and meter data open up for the next generation of data-driven
methods for the operation of district heating systems.

Common for the data-driven methods is, that the methods involve dynamical
modelling based on grey-box and data-driven digital twin techniques, which
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again leads to new methods for real-time forecasting, control and optimization.
The methods are adaptive, i.e. that they are automatically adapted to observed
changes which can be deduced based on the received data from the system.
Adaptive methods are crucial in order to handle the inherently non-linear and
time-varying characteristics of heat loads and the district heating system.

State-of-the-art methods for forecasting are crucial for efficient operation of
district heating systems. This is partly due to the fact that often the heat has to
be produced several hours (or days) before the heat is delivered in the houses.
Methods for forecasting are outlined in Section 2.

Obviously, methods for heat load forecasting have to be based on methods for
weather forecasting supplied by meteorological weather forecast services. Stan-
dard Meteorological (MET) forecasts are targeting rural areas whereas district
heating systems most often are seen in highly populated areas, and in Denmark,
all the largest cities are supplied with district heating. Since the city weather
often is rather different from the weather in nearby rural areas methods for
forecasting city weather have to be considered, and such methods are briefly
discussed in Section 3.

The heating is supplied by controlling the supply temperature at all plants
and by controlling the flow in the network. In general, efficient operations of
district heating networks call for data-driven methods for keeping the network
temperature as low as possible, yet the temperature must be high enough to
ensure that the heating systems of the supplied buildings are able to ensure
a reasonable indoor temperature and a minimum temperature of the hot wa-
ter. The temperature level is decisive for the efficient utilisation of renewable
energy sources via e.g. heat pumps and for effective use of waste heat from
low-temperature sources, e.g. from the cooling of data centres. Methods for tem-
perature optimization are described in Section 4.

Section 5 briefly presents methods for the operation of buildings connected
to a district heating network. The term Smart buildings is applied to highlight
that it is necessary to be able to control the buildings if they have to play
an active role in the optimisation and control of the overall district heating or
power system. For smart buildings, the heat load can be partly controlled by the
operator of the district heating network, and hereby we will be able to avoid or
reduce peak demands and solve issues with bottlenecks in the district heating
or the local power network.

Most of the examples in this chapter originates from studies conducted in
HEAT 4.0 using data from the district heating system in Brønderslev, Denmark.
This heating system is servicing approx. 5,000 customers in 3 subnets. The heat
production is characterised by several different units such as CHP units, gas
boiler, electric boiler, Organic Rankine Cycle (ORC), heat pumps, and concen-
trating, tracking solar thermal units and a large thermal storage capacity.

Some of the methods presented in this chapter links to Chapter 8 which
considers a method for optimal production planning and power market bidding.
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2 Forecasting for DHS

Forecasts are needed for optimal operation of DHS, e.g. for preparing the system
for the future load by investigating future scenarios and selecting the appropriate
strategy, e.g. what heating units to produce the heat, and what supply temper-
ature to push into the DHN. Three forecasts usually are needed: heat demand,
electricity price and weather. Heat demand forecasts play a crucial role in en-
hancing the operation of DHS as it is needed in both production and network.
Weather forecasts are used as inputs for the heat demand model therefore accu-
racy of them in predicting the future weather inside cities is crucial. Electricity
price forecasts are used for bidding strategy into the electricity market, hence
an important task when scheduling the production and creating bids for the
day-ahead and balancing electricity markets. The focus of this section will be
on methods for heat load forecasting, while electricity price forecasting will be
briefly considered.

Section 2.1 will introduce what drives heat consumption. This will be used to
identify a heat load model and to introduce a suitable framework for producing
online heat load forecasts. Section 2.1.1 introduces the forecasting toolbox and
framework of producing an online forecast for heat demand using a linear re-
gression model that adapts over time to handle the non-stationary. Section 2.1.2
describes the identification of important model elements using physical knowl-
edge of the system, and it describes how this knowledge can be used in grey-box
modelling procedure for identifying an optimal model for heat load forecasting.
Finally, an example of a heat demand forecast is introduced in Section 2.1.3 to
demonstrate the benefits of understanding the underlying physics of the dynam-
ics.

District heating is mostly applied in cities where the climate is quite different
to rural areas. A procedure to localize Numerical Weather Prediction (NWP) to
the climate in cities is proposed in a subsequent section. Section 2.2 introduces
briefly the need for them and a short introduction to the paper for further
reading. In addition, Section 2.3 discusses other frameworks to produce heat
demand forecasts.

2.1 Heat Load Forecast

Heat load in district heating consists of two components at the demand side;
space heating and domestic hot water, plus related heat losses in the DHS. Due
to the nature of the heat load, it varies during the day (the diurnal profile),
week, and year creating a time-varying process. [25] splits the heat load into
two categories, physical heat load and social heat load. The physical heat load
depends on the climate and heat losses in the system, while the social heat load
depends on the occupancy behaviour of the consumers and includes the usage of
domestic hot water. Furthermore, the variation in heat load is described in [25]
as follows:

– Seasonal Heat Load Variation: The physical heat load follows the increase
and decrease in ambient air temperature throughout the year with a negative
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correlation. The social heat load also has a seasonal component, since, e.g.,
people tend to stay outside or away for longer periods during summer while
people stay inside and consume more hot water during winter.

– Daily Heat Load Variation: The magnitude of the heat load during the day
follows the ambient air temperature however the shape of it depends on the
social behaviour. Social heat demand variations are explained by individual
and collective social heat behaviour, e.g., harmonised working hours. The
daily variation usually has two peaks, in the morning and the late afternoon.

Regional climate affects the individual district heating case, and the heat load
related social behaviour can vary between systems. For example, a coastal local-
ity is influenced by the damping thermal inertia of the sea. Taking into account
the climate is very important to achieve efficient operation of DHS. Since DHSs
are mostly used in urban areas, we will introduce the climatic characteristics
inside cities and highlight the effects of climate variables on heat consumption
in Section 3.

Thus, when developing a model to describe the dynamics of a system, it is
important to understand the underlying process that drives the system. For DHS
systems it is the physical description of how the weather influences the heat con-
sumption through the buildings properties, e.g. walls and windows. Also, social
heat consumption usually drives the peak consumption, e.g. in the mornings and
evenings. A clear understanding of what drives the consumption from physics
and social components will improve the models’ performance in forecasting the
future load of the system.

We will focus on utilizing the grey-box methodology which is using the phys-
ical understanding of the system, along with statistical methods to identify and
estimate parameters of the model to establish an adequate forecasting model
to predict the heating load. First, the heat load forecast framework for produc-
ing the predictions needs to be robust and simple to update the model and the
predictions when new information is available. It needs to be stable and han-
dle the non-stationary variation in the heat demand due to the weather-driven
consumption of space heating. Also, being able to translate the nonlinear rela-
tionship between the effects of the weather on the consumption. This is addressed
in Section 2.1.1 where the first part introduces a linear regression model where
the parameters of the model are updated recursively and past information is ex-
ponentially down-weighted, i.e. addresses the non-stationarity. The second part
proposes using a two-stage modelling procedure to be able to transform inputs
that have a non-linearity relationship to the heat demand such that the coeffi-
cients of the linear model can be estimated. The second is the identification of
the optimal model to be used in the forecasting framework. In Section 2.1.2, we
introduce a model with a full physical representation of the heat consumption in
a DHS. However, the full physical model is too computational heavy and would
probably not be able to produce the forecasts before they become invalid. There-
fore, an adequate heat load forecast model that uses parts of the physical insights
of the consumption and what variables are known to influence the demand (e.g.
ambient air temperature, wind, and solar radiation). Then combine this knowl-
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edge with statistical methods to identify the optimal forecasting model. Hence,
it is preferable to use a model, which gives physically inspired descriptions of
known relationships between climate variables and historical data to forecast the
heat load. The coefficients are then estimated using data-driven methods based
on a time series of observations from the system where the model will be used.
However, in order to formulate such a data-driven digital twin model, where the
parameters can be assimilated based on observed time series, the model cannot
be too complex. Basically, the model has to be structurally identifiable.

2.1.1 Framework for Heat Load Forecasts

We will present here the framework of establishing heat load forecasts that can
handle the non-stationary and non-linearity that comes with the heat load. This
type of forecasting framework has been proven accurate and able to perform in
online operations [44] [46]. The framework allows the forecasting model to adapt
to the changes in the parameters of the model for heat load forecasting, like
the transitioning from cold (winter) to warm periods (summer). This adaptive
method has shown adequate results in multiple research fields, especially in en-
ergy applications that are greatly dependent on physical behaviour. See e.g. [46]
[10] [14] for heat load forecasting, [9] for solar power forecasting, and [70] [49]
for wind power forecasting.

The model used in the framework is a linear regression model that can be re-
cursively updated when new information arrives and exponentially down-weights
past information. The model is also able to handle dynamical and non-linear ef-
fects, e.g. the ambient air temperature influence on heat load. There will also
be an emphasis on creating individual models for each k-step prediction horizon
since the lagged values in the model have to be tailored to the horizon, i.e. a
unique model with its own coefficients is created for each k-step forecast.

Linear regression models are well known and frequently used for statistics
and forecasting. Regression models as defined in [40] are used to describe a
static relationship between a dependent variable Yt and p independent variables,
xt = {x1,t, . . . , xp,t}. Therefore, an index t is introduced to denote the variable
at time t. A regression model can be written as

Yt = f(xt, t;θ) + ϵt (1)

where f(xt, t;θ) is a known mathematical function of the p + 1 independent
variables and t, but with unknown parameters θ = (θ1, . . . , θm)T . ϵt is a random
variable with mean E[ϵt] = 0 and variance Var[ϵt] = σ2

t . In many applications the
function f is linear, and the models describe how the parameters θ, are defining
a linear combination of the independent variables, xt. Given N observations of
the dependent variable and the p explanatory variable, we are able to estimate
the model parameters.

Estimation of the parameters of a linear regression model is usually done with
either Least Squares (LS) or Weighted Least Squares (WLS) methods. Given

the estimated parameters θ̂, we are able to predict a future value Yt+k|t given
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the independent variable xt+k. However, this type of forecasting model will not
perform well for heat loads as it lacks adaptive properties to update when the
system changes. This is necessary for heat load forecast due to the time-varying
and non-linear characteristics of the heat load. Therefore, the model needs to be
extended allowing for time-varying parameters that can adapt to changes and
transformations of the input variables.

Hence, an ordinary linear regression model will not perform well for heat load
forecast as it lacks adaptation as the heat load changes over time. [38] propose
an adaptive method that uses exponential weights using a forgetting factor, λ to
discount old information. For auto-regressive models with exogenous input, this
is called Recursive Least Squares (RLS) method with exponential weighting. It
allows the model parameters to adapt over time when new information becomes
available, therefore making it feasible to handle time-varying phenomena. The
algorithm updates the parameters every time new information becomes available
and uses the forgetting factor to discount old information and thereby increase
the relative importance of the most recent observations. That is, the coefficients
are recursively updated by an LS estimation with the weights exponentially de-
caying over time. The rate of decay is determined by the forgetting factor. The
forgetting factor can change over time, but usually, it is set constant. The forget-
ting factor is between 0 and 1 and controls the level of adaptivity, where values
close to 1 implies more weight equal weight on both new and older observations.
While values of the forgetting factor close to 0 emphasise more on newer obser-
vations in the estimation. The optimal λ is found by minimizing the Root Mean
Square Error (RMSE) as shown in [46]. This proposed method of allowing the
parameters to update as new information becomes available and discount old
observation is desired for online operations, as recursive methods offer relatively
simple and few computations to estimate the parameters for every iteration.

Apart from the time-varying dynamics of the heat load, the non-linear depen-
dency between the heat load and suggested input variables need to be considered
and combined with the recursive update. For this, a two-stage modelling pro-
cedure can be used as proposed in [51] and [59]. Before estimating the model,
the observed input variables are used either by mapping input variables by us-
ing some function (e.g. splines) or by using them directly (instant effect of the
independent variables) in a so-called transformation stage. After the transfor-
mation, it is possible to create a linear model of the transformed data to predict
the dependent variable by using the RLS scheme to recursively estimate the
parameters in the so-called regression stage.

In the transformation stage, transfer functions (e.g., low-pass filter), basis
splines, and Fourier harmonic series can be used to transform the non-linear
relationship between the independent and dependent variables, to a linear rela-
tionship. Other functions can also be used to create the regression vector, e.g.,
kernels. The low-pass filter has proven a useful tool for explaining the effect of
climate variables on the heat dynamics of buildings. As buildings are insulated
and have thermal mass, they do not react instantaneously to changes in am-
bient air temperature. Hence, low-pass filtering of the ambient air temperature
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leads to a better description of the temperature effect on the heat consumption.
Climate variables are typically transformed using rational transfer functions to
model their effect on heat demand adequately [10] [46]. Low-pass filters can be
created from rational transfer functions with a stationary gain equal to one. For
example, the simple first-order transfer function,

HaT
(q) =

1− a

1− aq−1
. (2)

where q−1 is the backward shift operator, i.e. q−1xt = xt−1, and a ∈ [0, 1] is
the time constant, can be used to describe the dynamics between the dependent
variable and independent variable that is being filtered. For instance, in a model
describing heat transfer between indoor air temperature in a building and am-
bient air temperature, a high time constant would mean that the building has a
high thermal mass and good insulation.

2.1.2 Model Identifications Procedure

Model identification of a system is a tedious process, as many things need to
be considered. For instance, for model identification of heat consumption, ques-
tions arise on how to model the diurnal variation, is there a weekly tendency
that needs to be modelled specifically, which climate variables are significant,
how to translate their relationship to the heat consumption, and how to con-
sider the physical representation of heat consumption to keep the desired indoor
temperature in buildings. Here, we will first investigate the heat consumption
from a physical point of view of the system, then we will demonstrate the use of
statistical methods to enhance the model.

During winter in cold regions, the heat load is dominated by the demand for
space heating, i.e. keeping the indoor temperature at the desired level to satisfy
the thermal comfort of the consumers. Therefore, the physical model of heat
demand can be viewed according to the heat loss characteristics of a building,
the passive heat loss through the construction and the active contributions due
to ventilation. These characteristics can then be used to suggest a forecasting
model of a total heat load for a district heating network where other heat losses
are added, e.g., losses related to the transportation of heat from production to
consumer. This is the first step of establishing a grey-box model, identifying
a model from physical knowledge. For instance, [39] demonstrate a grey-box
modelling approach for the heat dynamics of a building using a continuous-time
model based on stochastic differential equations. The final model is validated by
both simulation and forecasting of the indoor temperature. In [47] this analysis
is extended by considering the physical knowledge not just on a single building
level but also the thermal characteristic of the entire DHS to create a model
of the total consumption in the DHS. Climate measurements of ambient air
temperature, wind speed, and global radiation are used to create an appropriate
model. We will present the results from [47] on creating a heat load model of a
DHS, first from a purely physical derived model then introduce their proposal
of a model where the parameters of the model can be estimated by statistical
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methods. Thus, utilizing the Grey-box methodology of using physical knowledge
and statistical information embedded in data to reduce the model-space of a
purely physical model to describe the dynamics of the system.

(a) Heat transfer through a wall. (b) Solar Radiation through a window.

Fig. 1: The figures demonstrate the stationary heat transfer through wall and
window of a building. Missing is the effect of the ventilation. The source of these
figures are found in [46].

[46] uses Figure 1 to illustrate the heat dynamics of houses by describing
the heat transfer through a wall and a window. The figure demonstrates the
stationary heat transfer of a building without considering ventilation. Plot (a)
shows the energy exchange through a wall as the heat flux, Q̇ which is found
from the stationary relation between the outdoor, wall and indoor environment,

Outdoor: Q̇ = ho(Ts,o − Ta)− ϵR0, (3)

Wall: Q̇ = Uw(Ts,i − Ts,o), (4)

Indoor: Q̇ = hi(Ti − Ts,i), (5)

Overall: Q̇ = U(Ti − Ta)− U
ϵ

ho
R0, (6)

where Ta is the ambient air temperature, Ti is the indoor temperature, Ts,o

is the temperature of the outdoor surface of the wall, Ts,i is the temperature
of the indoor surface of the wall, R0 is the solar radiation orthogonal to the
wall, and U = (1/Uw + 1/hi + 1/h0)

−1. The heat is transferred as convection,
thus from warmer to colder areas and the h coefficients are the convection heat
coefficient of the outside of the wall and inside the wall. They describe the impact
of a boundary layers on the outer and inner wall surface where the former is
influenced by wind speed and wind direction while the latter can be assumed
constant due to the constant indoor environment. Uw is the thermal conductivity
of the wall divided by the wall thickness. Hence, the overall stationary heat flux
through the wall is described from the stationary relation between the ambient
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air temperature, indoor temperature, the solar radiation orthogonal to the wall
by convection.

The energy transfer through the window (Figure 1 (b)) consists of both
convection and conduction. Thus,

Q̇ = −ϵR0 + U(Ti − Ta) (7)

where ϵ is the fraction of solar radiation orthogonal to the window (R0) is not
reflected by the window and the U(Ti − Ta) describes the energy conduction
through the window between the ambient air temperature and indoor tempera-
ture, and U = (1/Uwin+1/hi+1/h0)

−1. Uwin is the thermal conductivity of the
window divided by the window thickness.

Ventilation, where the warm air from the buildings is replaced by the cold
air gradually, also needs to be considered. The heat flux of the ventilation is

Q̇ = CV̇ (Ti − Ta) (8)

where C is the product of the specific heat capacity of the air and the mass
density of the air and V̇ is the flow of air through the building.

Heat load of an area can therefore be assumed to be the heat loss of the heat
transfer through walls, and windows and by ventilation, thus QL,t = QWall,t +
QWindow,t +QV entilation,t plus the energy needed for domestic hot water usage,
QW,t for all buildings in the area. There is also ”free” heat QF,t that contributes
to the indoor temperature coming from e.g. electrical equipment but also hu-
mans. Thus, energy needed for space heating QH,t can be expressed as,

QH,t = [QL,t −QF,t]+. (9)

The truncation of negative values is used since when the quantity inside the
squared brackets gets negative the indoor temperature will increase or ventilation
will be used to prevent this. Considering the total heat consumption as

Qt = δc,t[QL,t − δp,tQF,t]+ + δp,tQW,t (10)

where δc,t is the fraction of the consumer heat load reacting to the climate.
δp,t is the fraction of the potential consumption active at time t. This means
δp,t accounts for holidays and δc,t accounts for the fact that during the summer
almost no consumers react to the climate and that they do not all start/stop
reacting on the climate at the same time of year. The dependence on holidays
might be negligible since it will to a large extent only affect the demand for
domestic hot water.

In [47] it is argued that these quantities of the model above can not be
estimated using available measurement, i.e., the total heat consumption, ambient
air temperature, wind speed and global radiation. Therefore, it is suggested to
create a model structure, inspired by the physical quantities of the heat transfer
qualities, that can be estimated only from data. Detail explanation of how to go
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from the physical orientated equation in Eq. (10) to the model in the equation
below is found in [46],

Qt = µ(h24
t , Υt) + a20H2(q)Rt

+ a111H1(q)Wt + a120H1(q)Ta,t + a121H1(q)WtH1(q)Ta,t

+ a100H1(q)Rt + a101H1(q)WtH1(q)Rt

+ a211,0Wt + a211,1Wt−1 + a220,0Ta,t + a220,1Ta,t−1 + et,

(11)

the filters H1(q) and H2(q) are found to be

H1(q) =
0.066

1− 0.934q−1
, (12)

H2(q) =
0.350 + 0.612q−1 − 0.226q−2

1− 1.703q−1 + 0.739q−2
. (13)

The function µ(·, ·) models the diurnal variation, Rt is the solar radiation on
a square pillar (see [46]), Wt is the wind speed, Ta is the ambient air tempera-
ture, et is the model error (iid and N(0, σ2)), a. are the coefficients of the model.
The filters H1(q) and H2(q) are rational transfer functions and are proposed to
filter the climate variables to model their effect on them to heat load. [46] ar-
gues for instance that constant indoor temperature will effectively eliminate the
heat storage capacity of the floor and internal walls, it seems therefore reason-
able to use a rational transfer function when filtering the climate variables for
heat demand modelling. Also, low-pass filtering is ideal as the dynamics at the
boundary layers of the wall can be neglected however the conduction through
the wall needs to be modelled. The inertia due to thermal mass indicates a slow
response which again suggests that low-pass filtering of the climate variables is
preferable.

This model is proposed to be used to predict the future heat consumption
and is demonstrated to perform adequately, however it was shown that there
was auto-correlation in the errors. A noise model was included in the model
to remove the correlation using an auto-regressive model on the errors using
lagged error on the past; 1, 2, 3, 23, and 24 lagged errors. The model including
auto-regression on the noise showed that the auto-correlation of residuals was
removed. When comparing the result between the model in Eq. (11) and the
same model using the noise model, it showed that for online applications the
model including auto-regressive terms performed significantly better for short-
term horizons while the model without auto-regressive terms performed better
for longer horizons. Hence, using information from the prediction errors of the
model can improve the predictions on shorter horizons. The model in Eq. (11)
was used for demonstrating online prediction and adaptive RLS update on pa-
rameters, it showed high accuracy for forecasting the heat consumption for a
large area where the different methods of modelling diurnal profile and different
forgetting factors are compared.

Model identification of a heat load model can also be done using traditional
statistical approaches, thus finding the optimal structure of the forecasting model
by finding which independent variables that describe the heat load adequately.
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Also, how those independent variables enter the model, i.e. how they are mapped
in the transformation stage, here the physical understanding of the system will
be helpful. Model building procedure is described in detail in [40, Ch. 6] along
with the estimation of parameters and validating the model (model checking).
Model building is an iterative process where the model is changed until it is
adequate for its purpose, e.g. forecasting. The initial step of the identification
procedure for heat load is to find a suitable initial model describing the response
variable, the heat load. For instance, a model that includes an intercept and some
factor that models the social effect of the heat load, i.e. the diurnal profile. It is
recommended not to include climate variables in the initial model so that one can
use the initial model to identify which climate variables are significant. Modelling
the social effect in the initial model is necessary as it is common knowledge that
the heat demand has a diurnal profile. The profile can be modelled using Fourier
harmonic functions [46] [10], splines or even using the hour of the day as input
[22]. After modelling the social component, it is necessary to identify which
climate variables influence the heat load and how to include them. The cross-
correlation function can be used to identify what climate variable to include by
computing the cross-correlation between the prediction residuals (e.g. one-step-
ahead prediction) from the initial model and the climate variable time series.
The climate variable with the most significant correlation is then added first
to the initial model. Selecting what transfer function to use can be done by
computing an error metric score that is suitable, for instance, the RMSE score.
The model extensions are then compared to find which function (or the instant
effect, i.e. no mapping function) describes the dynamics between the climate
variable and heat load adequately. After finding the optimal function, these steps
are iteratively repeated until the final model accuracy can not be improved. This
model identification process is demonstrated in [10] where the climate variables
are used to find the ideal model of the heat load of single-family houses. This
procedure is data-driven as the variables are added or transformed and then
the results are investigated to see if an adequate model has been found, this is
repeated until the result is satisfactory. Here, the understanding of the physical
nature of the system dynamics is an advantage, as it gives insight on what
variables to be included and how they affect the system, e.g. low-pass filter of
the ambient temperature to describe the heat consumption. We will present an
example of forecasting performance by including a low-pass filter of the ambient
temperature in Section 2.1.3. Additionally, the performance of a state-of-the-art
forecasting model is also illustrated.

2.1.3 Demo: Brønderslev

In this section, we will demonstrate the performance of a forecasting model that
is created based on the methodologies discussed earlier in a real district heating
case. We will highlight how the model can be improved by implementing physical
knowledge of the relation between heat consumption and weather. A state-of-
the-art forecasting model supplied by HeatFor™[4] will be compared with the
simple model proposed here.
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A first attempt to forecast the heat load in Brønderslev would be to include
an intercept, Fourier harmonics series to describe the diurnal variations and
NWP of the ambient air temperature. Hence, an initial model is

Ŷt+k|t = θ0,k + µ(t, nhar, αdiu) + θ1,kT
a,NWP
t+k|t , (14)

where the subscripts t is the time and k is the prediction horizon. This model will
be referenced as Model 1. The estimation and forecast of this model is done using
the R package, onlineforecast [8]. The package gives the opportunity to create
forecasting models with estimated coefficients for each prediction horizon and
estimates the coefficients adaptively using recursive least squares with an expo-
nential forgetting factor as described in Section 2.1.1. Model 1 will be extended
to model the physical knowledge on how changes in ambient air temperature
affect the heat consumption’s by using the low-pass filter Ha(q),

Ŷt+k|t = θ0,k + µ(t, nhar, αdiu) + θ1,kHa(q)T
a,NWP
t+k|t , (15)

and will be referenced as Model 2. The results are shown in Figure 2 where
on the left plot, the RMSE for prediction horizons from one to 72 hours ahead
is illustrated. The improvement of including the low-pass filter is significant as
the RMSE for all horizons has decreased. The right plot in Figure 2 shows one
realizations of the forecasts into the future made at 2021-01-10 12:00 (vertical
grey dashed line). This is only one realization and therefore should not be used
to compare the accuracy between the models (use the RMSE plot). These plots
clearly show that the improved model represents the dynamic changes in more
detail. Thus, exploiting the physical dynamics will improve the forecast accu-
racy. The state-of-the-art performance is also visualized and a quite significant
improvement in accuracy is clear when compared to the simple models where
the most significant difference is in the short term forecast. High accuracy in the
short term forecast is crucial for enhancing the temperature optimization of the
network, i.e. lowering production cost and reducing heat losses by keeping the
supply temperature low.

2.2 Electricity Price Forecast

Here, we will briefly describe the forecast of electricity prices to optimize the
economic performance of district heating with respect to the production bal-
ancing of heat and electricity, see further information in Chapter 8. In the case
of electricity markets dependent units such as CHP or heat pumps, successful
trading on the electricity market is important for the district heating operator.
Most of the electricity is usually traded on the day-head market or wholesale
markets and prices are often quite volatile and not determined by physical laws.
The volatility and complexity increases also with the increasing share of decen-
tralized Renewable Energy System (RES). Therefore, electricity price forecasts
are generally only based on data-driven models. [33] propose a two-step method
to forecast the electricity price and its dependency on forecasts of load and wind
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Fig. 2: Figure demonstrates performance of three heat demand forecast models.
The left plot shows the RMSE for different k-step prediction horizons while on
the right plot shows realizations of the forecast from the models.

power production. Uncertainty of the price forecast is not given in [33], however
information on the uncertainty is often beneficial and needed e.g. for includ-
ing the forecast into stochastic optimization methods [16] [62] [24]. There is a
trend towards research on electricity price forecasting including uncertainties
and probabilistic forecasts are gaining interest [53]. For an overview and more
detailed information, we refer the reader to the review papers [36], [52], [71] or
[6].

2.3 Further Heat Load Forecast Models

We have proposed grey-box modelling in order to formulate a model for heat load
forecasting and a framework to deliver online predictions of the heat load in this
section. However, black-box models that are purely driven by data are often also
suggested for heat load forecasting. For example, linear models where coefficients
are estimated using ordinary least squares [19] [22]. AutoRegressive Integrated
Moving Average (ARIMA) models are also a common method, often with a
seasonal component. In [28] it is proposed to use seasonal ARIMA (SARIMA)
models using a state-space framework. Using the state-space formulation implies
that they are able to produce online predictions using the Kalman filter to update
the forecasts and generate new forecasts when new information is available.
These methods are easy to understand and computationally fast however they
fail to describe the nonlinear dependency without applying transformations of
the input. More advanced black-box models, e.g. machine learning methods,
have demonstrated that they can capture the complex non-linear dependency
that can be difficult to model using linear models.

In [63] it is proposed to use a feedforward neural network using two layers
of neurons and using a sigmoid as the activation function. The neural network
is applied without using any physical knowledge about the DHS. The results
from the neural network are compared to a grey-box model where the nonlinear
relationship between demand and weather variables are taken into account by
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transfer functions to create a linear regression model. Similar inputs are used
for both models however the number of coefficients is significantly higher for the
neural network with two layers of five and two neurons. In this case, the grey-box
model has a better performance in the out-of-sample comparison.

[20] compares a linear model, a feed-forward neural network, and Support
Vector Regression (SVR) where the input variables are also investigated. They
find that the SVR has the highest accuracy. Additionally, the results show that
including holidays and calendar data as inputs improved all models. However,
this method has problems with the time-varying dynamics of the heat load.
Recurrent Neural Network (RNN) have been proposed to solve the time-varying
issue as demonstrated in [34] where it is shown that RNN handles trends in heat
demand data while a feedforward neural network cannot.

3 City Weather Forecasting

Both heat load forecast and temperature control are heavily dependent on the
most recent weather observations, in particular, the ambient temperature is im-
portant for the operation. The climate where the district heating system is lo-
cated needs to be analyzed to operate the network in an optimal setting as
mentioned at the beginning of this section. [46] and [44] suggest that the climate
variables: ambient temperature, solar radiation, and wind speed (including di-
rection) have the largest effect on the heating demand (in order of decreasing
importance). [46] gives a detailed description of how these climate variables in-
fluence heat consumption based on physical and stationary considerations:

– Ambient Temperature: The ambient temperature affects the indoor climate
through heat conduction in the outer walls and windows, but also through
ventilation. It is shown that the outdoor temperature affects the indoor tem-
perature through a low-pass filtered signal, and a simple transfer function
model is suggested to describe how the variations in the outdoor temperature
affect variations in the indoor temperature.

– Solar Radiation: The solar radiation affects the indoor climate based on
the angle of beams hitting the building, where the orientation of the beams
through the windows and the window area are most important. Basis func-
tions are used to translate the non-linear dynamics of the solar radiation to
its contribution to heating consumption.

– Wind Speed: Wind speed and wind direction affect the indoor climate as
natural ventilation, the effect is depending on the tightness of the building.
The wind speed also affects the convection heat coefficient on the outside of
the buildings. It is therefore modelled using a low-pass filter for describing
the contribution to the consumption.

Hence, in order to use these climate variables for enhancing the operational
performance of the district heating system, both a clear understanding of how
these variables affect the heat consumption and a forecast of them is needed.
However, weather forecasts models are usually tuned for rural areas, not urban
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areas where district heating is applied. The difference between the climate in
rural and urban areas is quite significant. Historically climate variables have
been measured in rural areas. For instance, airports usually have climate stations
and they are usually located outside the cities in an open area, where the only
impact is from the natural environment including lack of woody vegetation and
directly exposed to natural rain, sun, and wind. However, climate inside cities
is different from rural areas and therefore variables like the air temperature
measured at the airports may deviate from the temperature inside cities, where
the air temperature is exposed to human activities and the built environment.
Research shows that the ambient air temperature typically is higher in urban
areas than in rural areas [65]. The effect is termed Urban Heat Island (UHI).
A UHI is an urban area that is warmer than its surrounding rural areas due to
human activities or build human infrastructures. The variation of outdoor air
temperature data is both spatial and temporal. Several studies point towards a
typical average difference in urban and rural temperatures of 2-3 K. For instance,
[13] investigates the UHI phenomenon in Copenhagen and demonstrate it by
using three climate stations that are located inside the city, in the outskirts
and in a rural area outside of the city. The hourly temperature average from
the climates stations is computed and illustrates that the temperature measured
at each station is different. The climate station inside the city always has the
highest temperature, whereas the station in the rural area has the lowest. It is
also shown that the spatial temperature has time-varying characteristics, both
a diurnal and an annual variation is seen. For example, comparing the result
during summer shows that the average temperatures in the mornings are very
similar. However, later in the day, it differs, with higher temperature difference
in the city, and during the night it gets colder at the rural side. Thus, the city
does not lose heat as fast as the rural part. While during winter, there is quite
a constant offset between the stations.

3.1 Localizing Numerical Weather Predictions

NWPs are obtained by a physical model of the atmosphere and ocean to predict
climate variables. They are computed over a grid of the earth and are then in-
terpolated to a specific location where weather predictions are needed. However,
NWPs are designed for rural weather forecasting, and they often have problems
adjusting to the local climate in cities due to the local climate phenomenon.
The models seem to have trouble adjusting to local heat contributions, e.g., so-
lar heat in the street, heat from buildings, etc. DHS relies heavily on NWP to
operate their system efficiently, therefore it is important to correct the NWPs
before using them as input e.g. models for heat load forecasting. Especially, for
temperature control of the district heating system as it is done on a short-term
horizon (between one and 24 hours) and is heavily dependent on the current
local climate. Using a local climate station to localize the NWP, corrects the
short term NWP by adapting them to the climate using real-time climate mea-
surement [46]. Hence, this yields an optimal weather forecast for a certain area
that can be used to operate the temperature control in the most optimal setting.
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In [27] it is proposed to use Model Output Statistics (MOS) to bind NWP to
local climate stations observations, e.g., localize the forecasts. The MOS is a
simple technique that uses linear regression where the observed climate variable
is the response variable and predictors are the NWP variables which therefore
bind the NWP to the local climate. It is a simple and frequently used method
that will reduce systematic bias in the NWP if there is any. [18] propose using
an adaptive method to reduce the systematic bias and lower the RMSE of the
NWP.

4 Temperature Optimization

Efficient operation of district heating networks implies an objective to mini-
mize production cost of the heat production and reduce heat waste without
compromising the consumer comfort. For most district heating systems, this is
achievable by minimizing the supply temperature at the production site while
providing the total desired heat and fulfilling the requirement of minimum sup-
ply temperature at any time point at all points in the district heat network.
Decreasing the supply temperature is also highly valuable for heat production
sites where electricity is also produced (e.g. with CHP units) since it implies an
increase in the ratio of power to heat output, and, as electricity is more valuable
than heat, a more profitable operation is achieved.
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Fig. 3: Example of an reference curve for controlling the supply temperature at
the production site.

Temperature Optimization aims at optimizing the supply temperature. Tra-
ditionally, the supply temperature has been either controlled using a reference
curve schema or experience of the network operators [54]. A typical reference
curve is illustrated in Figure 3 where the supply temperature is determined as a
function of the current ambient air temperature. The supply temperature is kept
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constant during high ambient temperature for providing solely heat for domes-
tic hot water during non-heating periods. The temperature is set high enough
to reduce any bacteria risk. As the ambient temperature decreases the supply
temperature is increased until the maximum supply temperature of the system
is reached. This control schema aims at ensuring that the consumers receive
sufficient heat as it models the relationship between supply temperature and
ambient air temperature as a worst-case scenario, i.e. the temperature should
not be lower than the reference curve. The curve also considers that the supply
temperature for the given ambient temperature will have sufficiently large safety
margin for the flow to be adjust to satisfy the heat demand before it reaches the
maximum limit of the system.

The use of a single reference curve at the plant usually results in a high supply
temperature which is high enough to account for all other variables not taken into
account. This results in higher costs and more heat losses in the system. Thus,
the curve is not an optimal strategy as it does not consider other climate variables
that are known to influence heat consumption like wind speed, wind direction and
solar radiation. Furthermore, it ignores the social behaviour and the time-varying
relationship to demand. One of the important time-varying relationships is the
time-varying time delay between time of production and the time when the water
reaches the end-users. It is also not a predictive controller, i.e. it does not look
into the future while selecting the supply temperature. Even though this method
is naive, it is more advantageous than operating the supply temperature at the
maximum limit and allowing the flow to vary. However, the supply temperature is
kept unnecessarily high when discarding other factors. When including all of the
above factors into a control schema using predictive methods, new possibilities of
lowering the supply temperature without violating any restrictions are possible.
It is also important to point out that the hydraulics limitation of the DHN
implies some restrictions on the minimal supply temperature in order to ensure
that the flow is below the maximum limit with some safety margins. Thus, then
the supply temperature should be increased to meet the demand thus a predictive
method is needed to optimal select supply temperature before the flow reaches
the maximum.

With the increase in both computational power and research in adaptive
control during the 1980s, more sophisticated methods for DH have been de-
veloped. Adaptive controllers are able to operate time-varying and non-linear
systems since they can adapt to changes based on the output feedback of a sys-
tem (see, e.g., [7] for further reading). For DH, this improvements in research
related to control theory was necessary as the system is inherently non-linear
and non-stationary.

In this chapter, we will focus on temperature optimization based on adaptive
control using feedback from critical points in the DHN. Our description is based
on the research published in amongst others [41], [44], [45], [48] and [58]. The
described method also resulted in commercial software that is used for temper-
ature optimization in DHN in Denmark[5]. The method has proven to be able
to provide significant reductions.
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Section 4.1 will introduce and describe the characteristics of a DHN. Sec-
tion 4.2 will build on the knowledge of the network characteristics to introduce
temperature optimization and control. A demo case will be used in Section 4.3
to demonstrate the performance and savings. Finally, we give an overview of
additional work on temperature optimization in Section. 4.4.

4.1 DHN Characteristics for Control

The dynamics in a DHN are driven by the physical dynamics and the consumer
consumption, i.e., the heat load. As discussed in Section 2, consumption is driven
by intra-day variations, climate, and local social behaviour. [12] propose an ex-
tensive physical-simulation model of a DHN and describe the important physical
factors to consider. The physical factors are time delay, heat loss, pressure, and
friction loss. These factors are very important for accurate simulation and un-
derstanding of the DHN to maintain acceptable temperature and differential
pressure in the network. Thus, they are used to operating the network efficiently
by delivering the desired heat to the consumer while minimizing the operation
cost. Heat loss from pipe to surroundings is determined by the time of being
transported in the DHN from production to consumer (time delay), along with
the temperature of the hot water and the resistance of the pipe insulation. The
time delay or the transport time of sending hot water to a point in the network
is determined by the flow that is controlled by pumps based on the differential
pressure applied in the system. The pressure in the system controls how fast
the hot water travels in the network. Hence, the temperature loss between con-
sumers and the production plant depends on these variables. Pressure loss in the
system depends on the fiction which is a function of flow rate and other pipe
properties. The network is designed to maintain fixed differential pressure in the
network which the pump control tries to maintain by adjusting the flow in the
system. If the flow becomes too high then it becomes impossible to maintain the
needed differential pressure due to limitation of the pump. In these cases, the
differential pressure over the substations at the consumers will start to decrease,
and the consumer will then not receive the desired heat. Thus, these four factors
contribute to the two main components of delivering heat to the consumer; tem-
perature and flow. They are jointly linked together in a nonlinear relationship.
For instance, heat losses in the system are based on the temperature and the
flow, hence, the temperatures in the network are determined by the temperature
and the flow in the system.

The DHS usually also has restrictions based on these factors on the operation
of the network due to physical limitations and additional constraints made by
the utility. [48] describes the following usual restrictions:

– A maximum allowable flow rate in the system: The restrictions in the flow
rate are due to the (always) limited pumping capacity, the risk of cavitation
in heat exchangers and difficulties maintaining a sufficiently high differential
pressure in the remote parts of the network during periods with high flow
rates.
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– A minimum guaranteed inlet temperature at the consumers: This restriction
is due to limitations in the consumer installations as well as minimum do-
mestic water usage temperature requirements imposed by hygienic concerns.

– A maximum allowable supply temperature: This restriction ensures not to
damage pipelines and consumer installations.

– Limited short term variation in the supply temperature: The stresses inflicted
on the network by large and frequent fluctuations in the supply temperature
dictate that the short term variations in supply temperature should be lim-
ited.

– Maximum allowable diurnal variations of the supply temperature: In some
systems the size of the expansion tanks may impose limitations on the al-
lowable diurnal variation of the supply temperature.

Hence, the framework of the temperature control has many constraints and
physical limitations, thus operating a network consequently needs to consider
multiple aspects to result in an optimal operation. Optimal operation of the
network is achieved by minimizing the production cost without; compromising
the safe operation of the system, adversely affecting the maintenance cost of the
system, or sacrificing consumer satisfaction. Note that the physical description
and system restriction listed here are not valid for every system. Each network
is unique with different physical limitations or restrictions. However, they need
to be considered before implementing the temperature control to reduce the risk
of failure and achieve optimal operation of the network.

4.2 Controlling the Supply Temperature

In this section, we will introduce a control schema for the optimal operation of
the DHN. To simplify the schema, we will only present a DHS that is supplied
from a single station. We also assume that the return temperature and the
diurnal peak load are not affected by the optimization. The operation costs can
then be minimized by minimizing the supply temperature without violating the
requirements discussed in previous sections. The methodology introduced here
is a statistical approach of estimating the supply temperature by using adaptive
estimation and transfer functions to model the network as initially proposed by
[64], [44] and [45] and extended in [48] and [58]. Hence, we do not use a detailed
physical model of the network, but statistical methods along with measurement
data to describe the dynamics.

Since the adaptive controller incorporates feedback information, the DHN
needs to have some measurement wells in the network so that the controller gets
feedback from the network. The placement of the wells should be located at
points with the lowest temperature in the network, i.e. largest temperature loss.
These wells are usually decided at the time of the design of the network or added
later in the network when needed. Hence, if the supply temperature requirement
is satisfied at those points in the network, we expect that the requirements of all
consumers in these areas are satisfied. These measurement points will be referred
to as critical netpoints. A more recent study outlines how to use frequent meter
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readings at the consumer as a cheaper and flexible alternative to measurement
wells in the network [15].

FSC
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OCLoad
Forecast

NWP

Fig. 4: Schematic view of the proposed controller: The supply temperature sub-
controller (SC) which models the relationship between supply temperature, Ts,t

at the production and netpoint temperature, Tn,t. The flow sub-controller (FSC)
that uses heat load and flow to estimate the supply temperature. Finally, the
overall controller (OC) that select the highest supply temperature, T ∗

s,t+1 from
the sub-controllers.

The main concept of the proposed control strategy is illustrated schematically
in Figure 4. The overall controller (OC) selects the highest supply temperature
from the flow sub-controller (FSC) and the supply temperature sub-controllers
(SC) at the critical netpoints to be used in the next time step. The SCs estimate
the lowest possible supply temperature from the plant using statistical identified
transfer function without violating any restrictions at the consumers. The FSC
computes the supply temperature without violating the maximum flow limit. The
main principle of the proposed control schema is to keep the supply temperature
as low as possible. The heat demand can be satisfied, by varying the mass flow
through the network and by varying the supply temperature,

pt = qtcw(Ts,t − Tr,t), (16)

where pt is the heat load, qt is the flow, cw is the specific heat constant of
the water in [Jkg−1◦C−1], Ts,t is the supply temperature and Tr,t is the return
temperature.

The proposed control strategy here ensures the heat demand is met by vary-
ing the mass flow before increasing the supply temperature. Thus, the supply
temperature is kept as low as possible while the flow is varied, the temperature is
only increased when the flow is at the maximum value. The methodology behind
the controllers and the transfer function between the production and network
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to establish a temperature controller is introduced briefly below. More detailed
explanation can be found in [43], [44], [45], [41], [48], [55], [63], [50], and [58].

Flow Sub-Controller (FSC): The FSC is to perform an online control
of the supply temperature in order to ensure that the flow rate q is kept close
but below a maximum value qmax. The controller uses prediction models of the
heat load to find the optimal supply temperature while keeping the flow as high
as possible. The future control signal, Ts,t+1 is found by solving for the supply
temperature in Eq. (16),

Ts,t+1 = T̂r,t+1|t +
p̂t+1|t

cwq
ref
t+1|t

(17)

where T̂r,t+1|t is the forecasted return temperature, p̂t+1|t is the forecasted heat

load, qreft+1|t is the mass flow from a reference that is a prediction of the flow and it

is below the maximum flow, qmax with a large probability, e.g. 99%. This simple
controller only considers one-step ahead into the future however the change of
supply temperature will affect the consumers after different time delays. [43]
propose to use weights on the j-step predictors to estimate the desired supply
temperature, Ts,t+1. More advanced flow controllers are proposed in [48] and [41]
where the uncertainty from prediction of heat load and return temperature are
considered.

The Transfer Function Model: An important aspect of the supply tem-
perature sub-controllers based on a statistical approach is to identify the dynamic
relationship between the temperature at the critical netpoints in the network and
the supply temperature and flow rate at the plant for the supply temperature
sub-controller. An accurate estimate of the network characteristics, including the
time-delay is important for enhancing the controller. Hence, a model of the dis-
trict heating network is needed for optimal control. A pure physical model of the
network (white-box) is almost impossible to establish and would also be likely to
be too complex for control purposes. The white-box models can be adjusted in
operational settings when calibrating the models based on previous operational
data however it can take too long due to the complexity of the model or the
assumptions being wrong.

We therefore propose, a model of the network that is simple and is easily
updated when new information or data is available about the network charac-
teristics. The model is found by identifying a statistical transfer function of the
network. It can be modelled using a single-input single-output AutoRegressive-
eXtraneous (ARX) structure using a fixed time delay. An example of a model
for a DHN is given here

Tnp,t = a1Tnp,t−1 + b0,t−τTs,t−τ + b1,t−τ−1Ts,t−τ−1 + b2,t−τ−2Ts,t−τ−2 + ϵt,
(18)

where Tnp is the netpoint temperature, Ts is supply temperature, ϵ is the noise,
and τ is the time-delay between the two temperatures (at the plant and the
critical point). The coefficients; b0, b1, and b2 describe the diurnal variation in
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the system, see [64] for further details. The model coefficients can be constants,
but since DHS are non-stationary it is better to estimate them recursively. The
model is formulated as a 1-step prediction model. The k-step predictions are
then obtained by recursive use of the 1-step prediction model. [64] propose dif-
ferent advanced methods to estimate the time-delay recursively, however [44]
and [48] propose a simple scheme to estimate the time-delay for the transfer
function. The simple method estimate the time delay as the lag with the largest
numerical value of the cross-covariance function between the time series of the
supply temperature and the netpoint temperature. [58] suggest more advanced
methods to forecast the netpoint temperature and estimate the time-delay using
conditional Finite Impulse Response (cFIR) as a transfer function of the supply
and netpoint temperature. This allows for a nonlinear estimation of the time
delay depending on the mass flow in the system.

Supply Temperature Sub-Controller (SC): The SC controller focus
on creating a control schema to vary the supply temperature at the produc-
tion without violating the requirements at the critical net points. It utilizes the
transfer function model of the supply temperature and netpoint temperature,
then it is possible to create a control scheme based on the network character-
istics. In [56] and [57] an eXtended Generalized Predictive Controller (XGPC)
is proposed to be used to control the supply temperature based on the transfer
function between the supply and netpoint temperature. The Generalized Predic-
tive Controller (GPC) is modified to handle non-stationary systems as it assumes
that the predicted output can be expressed as a linear combination of present
and future controls. Traditionally, this is obtained by solving the Diophantine
equations as proposed in [17] however these equations are formulated for time in-
variant systems, and hence modifications are needed. [56] propose a modification
of the GPC where the optimal prediction is the general conditional expectation
of the system output. The GPC is only reasonable if the underlying process has
a slow time-variation, while the XGPC can handle time-varying processes. This
is important since the transfer functions that describes the network characteris-
tics are inherently non-stationary due to the flow which results in a time-varying
time-delay and different heat losses as a function of the hot water temperature
and the flow.

The XGPC is based on an AutoRegressive Moving Average-eXtraneous (AR-
MAX) model with time-varying parameters, and the transfer function of the
network is given by

At(q
−1)yt = Bt(q

−1)ut + Ct(q
−1)et (19)

where At, Bt and Ct are time-varying coefficients polynomials and q−1 is a
back shift operator. The coefficients can be estimated adaptively using recursive
methods. As the model is based on a time-varying process, the j-step predictor
ŷt+j|t is described by the conditional expectation of yt+j given observations of
the output up to time t

ŷt = Htut + vt, (20)
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where ŷ is the vector of predicted reference netpoint temperature, u is the vector
of the future control signal (supply temperatures), v is the vector containing
the expected response from the input free system, and Ht is a matrix of size
N×N containing the time-varying impulse response of the system. The N is the
maximum prediction horizon of the controller, N ≥ 1. In relation to an ARMAX
model and Eq. (20), it can be seen that h is the weight of the time-varying
impulse function on future control values and v is the expected response from
the past, see [56] and [48] for detailed explanation. It is possible to use individual
models for each j-step prediction. Then each row in Ht and v corresponds to
the j-step prediction model.

The object of the controller is to minimize the difference between measured
netpoint temperature and the reference temperature without violating the re-
striction with a certain probability. Additionally, the controllers object function
contains a term with the purpose of minimizing the supply temperature fluctu-
ations. A derivation of the optimization problem using the XGPC control law
and model of the network as shown in Eq. (20) in detailed is provided in [48].
The cost function is optimized over multi-step ahead horizons due to fact that
the time-delay in the system varies, and hence a minimum and maximum time
period is considered for the cost calculation. It is then shown that solving for
the input vector, ut (supply temperature) results in

ut = −[HT
t Ht + FTΛtF ]−1[HT

t (vt − yref
t ) + FTΛtgt]. (21)

At each timestep, the control signal is estimated, therefore only the first
element of the control vector is implemented, i.e.,

ut = [1, 0, . . . , 0]ut (22)

In [41] extended formulations of the XGPC controller are propose. This includes
for instance equality constraints.

Overall Controller (OC): The OC selects the highest supply tempera-
ture, T ∗

s,t+1 from the required supply temperatures computed from the FSC and
the SC sub-controllers. This temperature is used as the supply temperature for
the plant in the following hour; the model parameters, the predictions and the
controller signals are updated each hour.

4.3 Temperature Control: Demo Case

Supply temperature at Brønderslev is now being operated by data-driven tem-
perature optimization in an on-line operation. It has been operating since be-
ginning of 2020. Before the data-driven operation, the network was operated by
a simple algorithm that did not receive online feedback from the network. The
data-driven temperature optimization was done with the HeatTO™[5]. Figure 5
illustrate the results from the previous operation and the current data-driven op-
eration. The operations are compared using three months (February, March and
April) in 2019 and 2020 for the old and new controller. The plot compares the
performance of the controllers versus the degree days. Degree days are used to
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Fig. 5: The figure demonstrates the difference in performance using simple op-
erations of controlling the supply temperature and using advanced data-driven
method.

compare supply temperature between heating seasons when comparing different
operations. Degree days, T dd, are computed as the positive difference between
the average ambient temperature (T̄a) over one day, and a cut-off of heating
demand from buildings (we use 17°C here), i.e.

T dd = max(0, 17− T̄a). (23)

The average supply temperature for the given day is then computed and
plotted versus the degree day as seen in Figure 5. To compare these operations,
a regression model using Ordinary Least Squares to estimate the parameters of
a model with an intercept and slope have been fitted to each operation as shown
in Figure 5 and the result is,

New controller: Tsupply = 68.05 + 0.04T dd (24)

Old controller: Tsupply = 71.2 + 0.36T dd (25)

We see that the supply temperature regression line is approximately 3°C
lower at y-intercept of for the new controller when T dd = 0, and further the
slope is lower for the new controller resulting in larger differences for higher
T dd. To compare the difference between the two methods, for instance, if we
investigate a degree day of 10 then the difference is around 7°C.

Decreasing the supply temperature for operation leads to an increase in sav-
ings for the utility. [45] suggest a rule of thumb for savings resulting from lower-
ing the supply temperature in CHP plant; For each degree lowered, the savings
for the heat loss in the network is 0.5 % and the savings from more efficient
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production is 1 %, thus the savings can be compute as

Savings = (Costbefore ∗ x [◦C] ∗ 0.5%) + SharesProduction(Costbefore ∗ x [◦C] ∗ 1%)
(26)

where x is the supply temperature difference between operations to evaluate the
savings.

Thus, the estimated savings from using data-driven temperature optimization
would be roughly 7°C and the savings would be around 10.5%. The equations are
just a rule of thumb to demonstrate potential savings when sufficient production
data is not available.

4.4 Further Temperature Optimization Methodologies

[29] propose similar temperature optimization approaches where statistical meth-
ods are used as describe above. They also take advantage of adaptive methods
to model the time-varying behaviour. However, instead of the XGPC and cFIR,
they use fuzzy modeling to describe the response characteristics of the network
when supply temperature and flow are varied. They model the relationship be-
tween the supply temperature and network temperature using multiple local
linear models that are only valid in certain regions, i.e., a fuzzy modeling to
handle the non-linear dynamics of the system.

All above mentioned methods utilize statistical descriptions of the network
to estimate the transfer function between two points (plant and netpoint tem-
peratures) and derive controllers from there. The goal was keeping the supply
temperature as low as possible to minimize the operational production cost for
the system. However, other approached have been suggested in literature on
how to estimate the network characteristics to ensure consumer are receiving
the required temperature. For example, models derived from a purely physical
representation of the network by modelling heat and mass transfer of the hot
water. [12] propose a physical model of the network to describe the dynamics
of it. This is done by predicting the network temperature and flows at nodes in
the network, referred to as the node method. In this, the DHN is represented
by a set of nodes by their physical description, e.g. heat capacities and pipe
diameters. Therefore, it is possible to simulate the network characteristics and
estimate suitable supply temperatures. This model gives promising results in of-
fline settings where it optimize both the production and the network however for
online purposes, the optimization is too computational heavy to deliver on time.
[37] suggest a simplified physical representation of the network by reducing the
number of pipes into a tree structure without a circular loop. They demonstrate
this in a case study where pipe system is reduced from 1079 nodes to approxi-
mately 10 nodes without sacrificing any accuracy and reducing the computation
time by 99 %. In [61] and [60] also physical models are derived to operate a DHS
using predictive control where the time-delay and temperature are estimated
from a physical simulation model. Additional research where both production
and network or only the network are modelled using physical derivation of the
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network has been carried out (e.g. frequently, the node-method proposed by [12]
is used). Further Mixed Linear Integer Programming (MILP) is utilized to op-
timize the production and network to minimize the cost [11] [26] [61]. [69] gives
an extensive review on DH for further reading.

5 Smart Buildings in DH Network

Buildings are traditionally controlled to achieve a good indoor environment. This
is done independently from the surrounding energy systems. When introducing
the dependency of building control on its surroundings, a decision has to be
made, whether the building is in charge to meet the demand of e.g. the energy
system (indirect control), or the external system can control the building system
by direct control. The indirect method can be achieved by broadcasting prices
that change according to the energy system demands as described below. In both
schemas, direct and indirect control, the ability to control the many heating-,
cooling- and ventilation devices has to be in place in the involved buildings.
The below introduced Model Predictive Control (MPC) demonstrates such an
enabling technology for simple buildings. In general, smart control of buildings
require a central monitoring and control system.

In this section, we describe the interaction of smart buildings with DHN as an
appetiser to this extensive topic. First, we describe the motivations and values
of smart buildings in DHNs. Next, we introduce MPC as a technology to deliver
smart control of thermal dynamics for buildings. We round up the section by
introducing a hierarchical control setup, where buildings work together in the
DHN to deliver flexibility.

5.1 Value propositions by Smart Building to district heating

There are numerous reasons for controlling buildings in smart ways; many of
them targets the efficiency of the building itself, others target the interaction
with the surrounding neighbourhood and infrastructures. In this section, we
give a single example of a control technology, MPC, that enables both, internal
and external smart solutions.

A traditional, non-smart building can be controlled by different means, man-
ual control by the occupants, individual control on each heating and cooling
device (radiators and floor heating) and also individual apartment control in
multi-family buildings. Advanced buildings, such as office buildings and schools,
are controlled by central installations that connect all the controllers and col-
lect data centrally. Such systems are often controlled by skilled professionals
and perform better compared to individual control. However, literature shows
clearly that there are huge improvements to the performance of the latter type
of buildings.

In recent years, the objectives for control are increasingly complex. On top
of a request for the primary goal of optimal indoor climate conditions, energy
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efficiency with related CO2-footprints and economical efficiency are the most
dominating of many target objectives of control. Later years, flexibility is added
to the list of objectives for the control. Control strategies that can handle these
diverse demands call for rather advanced control units in buildings, smart build-
ings, that are able to e.g. shift heat demand in time and power, compute advanced
demand patterns that compensate for temporal variations and other things.

Many methods and solutions have been proposed in the literature. One of
these methods is MPC, which is a well-established and developed method for
building climate control [23]. Its popularity is due to its simplicity and natural
way of incorporating constraints and accounting for disturbances (such as the
weather) in the optimal control problem. And not at least, the methods can
be implemented in almost any hardware with computational abilities that are
necessary to do essential predictive computations. Basically, these computations
are very similar to the modelling and forecasting tasks applied to whole district
heating systems and discribed in this book, because buildings are similarly af-
fected by climate conditions [68]. However, the number of controllable units may
be extremely high compared to district heating systems and so is the number of
sensors involved.

Below, a simple building system is described as an example of the MPC
methodology.

5.1.1 Building Control by MPC-Methodology

We give a brief example of how to model and represent a building in a DH
network to describe the necessary states and properties.

Consider the following system of stochastic differential equations with obser-
vations taken at times tk

dx(t) = f(x(t), u(t),d(t))dt+ g(x(t))dω(t) , (27a)

yk = h(x(tk)) + vk, vk ∼ N(0, R) (27b)

where x, u, and d are the system states, controllable input, and non-controllable
input respectively. f is the deterministic dynamics, g is the diffusion function,
ω is a standard Brownian motion, and vk is the observation noise. The above
model formulation is an example of a grey-box model that includes physical
dynamics in f and describes stochastic elements by the Brownian motion that
are too complex to otherwise model. [66] modelled the thermal dynamics of a
Danish school building in a DH network using a hydraulic heating system with
thermostatic controlled radiators. Such a model enables an MPC to control the
thermal dynamics and perform tasks such as peak shaving or load balancing.
They find the following states useful to include in a grey-box model

– The indoor air temperature, Ti(t). This is typically the variable that is im-
portant to maintain a comfortable indoor climate.

– The temperature of the building envelope, Tw(t). This contains important
information about the insulation-level and how much heat is stored in the
walls.



Data-Driven Methods for Efficient Operation of District Heating Systems 29

– The flow of the water in the space heating system, Φ(t); this varies as the
thermostats in the radiators open and closes.

– The temperature of the radiators in the building, Th(t), is the component
that delivers the heat in the rooms.

– The return water temperature, Tret(t), is important since it determines the
amount of heat the building uses.

Together, the above states form a model that is sufficient in describing the im-
portant thermal dynamics in a large building in a DHN. The controllable input
to the system, u(t), is the set-point to the radiator thermostats in the building.
The map between the difference in set-point and room air temperature and how
open the valves are was modelled using a sigmoid function. Using a system with
the above states, it was possible to optimise the operations of the building while
shifting the loads to desired times [67].

5.2 Implementation of MPC in a Smart Buildings

On a building level, the MPC has the objective to satisfy certain constraints
(e.g. a comfortable indoor air climate at all times) while at the same time min-
imising some objective. For economic MPC [35] [30], the objective typically is
to minimise the cost of the heat consumption while only adjusting the set-point
of the radiator valves (in the case of a building as described above). Such an
optimisation problem can be formulated as

J(x̂k|k,d̂(t)) = min
uk

N−1∑
i=0

ck+iuk+i (28)

s.t. x̂(t0) = x̂k|k , (29)

x̂(t) = f(x(t), u(t),d(t)) , t ∈ [ti, ti+N [ , (30)

ŷk+i = h(x̂k+i) , i = 1, . . . , N , (31)

ŷk+i ≤ ymax,k+i , i = 1, . . . , N , (32)

ŷmin,k+i ≤ ŷk+i , i = 1, . . . , N , (33)

∆umin,k+i ≤ ∆uk+i ≤ ∆umax,k+i , i = 0, . . . , N − 1 , (34)

umin,k+i ≤ uk+i ≤ umax,k+i , i = 0, . . . , N − 1 , (35)

u(t) = ui , t ∈ [ti, ti+1[ . (36)

In the above, N is the prediction horizon, {ck+i}N−1
i=0 is the price signal that

reflects the price of the heat. The price indicates the degree to which it is ac-
ceptable to heat at any time. This could be with respect to e.g. a CO2-signal
that carries information about the CO2-density of the heat. The objective of the
MPC is then to minimise this cost while satisfying constraints on the building
states and the controllable input.

A well designed MPC is capable of optimising both the thermal comfort of
the indoor environment and the energy usage [21]. However, the above mentioned
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MPC solves only the problem of optimal control on a local building level. The
building does not interact with other nearby buildings and does not necessarily
align their collective heat load. The heat load of an entire district may conse-
quently be unfavourable for the district heating company. Hence, an obvious
question to pose is: How should the heat load of the building stock be shifted to
be optimal for both the building and the network? Somehow, we want the entire
heat load of a larger district to follow some reference heat load. For instance to
follow the power production curve of renewable energy sources.

In the next section, we briefly describe an overall methodology that enables
the application of the presented MPC of buildings to cooperate with the sur-
rounding smart energy networks, amongst these district heating.

5.3 Hierarchical Control

We explained earlier in this book, the complexity of the energy systems are
increasing and the demand for adaptability and flexibility has to follow to ensure
robust user services at any time. In this example, we focus on ’flexibility’ which
is the ability to shift demands in time and power, according to the request by
the surrounding energy systems, i.e., we might be requested to shift the heat
loads of entire building stocks to match some reference heat load on a district
level.

[42] has proposed a hierarchical control approach, where the overall optimi-
sation is distributed between involved ’layers’. One layer could be the electrical
net, another the district heating system, and at the lower end the individual
buildings.

The price signal is determined by a reference type of controller such that
a reference heat load can be followed. This gives possibilities for peak shaving
or for controlling the load such that it matches e.g. the local renewable energy
production.

The goal of a hierarchical control setup is to send out a price signal to the
considered building stock that gives the buildings information about the energy
prices (which could reflect e.g. the CO2-density of the available energy). A flex-
ibility function is a model that determines the heat demand of a building (or
any dynamical system) given a price signal. Figure 6 illustrates this dependence.
In [31], a linear model is suggested, but in [32] it is shown that a non-linear
grey-box model using stochastic differential equations is more appropriate. By
sending out a price signal to the building stock and receiving back the entire heat
demand, the upper-level controller is able to shape the price signal such that the
heat demand of the entire building stock follows for instance a reference heat
load.

The flexibility function can be determined also for a larger DH network from
which we are able to construct a two-layer control setup. The upper layer solves
the problem of making the heat load of the building stock follow a reference power
signal given by the district heating operators to minimise e.g. the CO2-emissions,
while the lower level consists of individual controllers for each building. The latter
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Fig. 6: The heat demand of a building can be predicted from the price signal.

controllers solve the problem of keeping each building comfortably heated, i.e.
maintaining the indoor temperature within the comfort constraint.
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